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Abstract
Numerous studies have shown that neural activity in sensory cortices is remarkably variable over time and across
trials even when subjects are presented with an identical repeating stimulus or task. This trial-by-trial neural
variability is relatively large in the prestimulus period and considerably smaller (quenched) following stimulus
presentation. Previous studies have suggested that the magnitude of neural variability affects behavior such that
perceptual performance is better on trials and in individuals where variability quenching is larger. To what degree
are neural variability magnitudes of individual subjects flexible or static? Here, we used EEG recordings from adult
humans to demonstrate that neural variability magnitudes in visual cortex are remarkably consistent across different
tasks and recording sessions. While magnitudes of neural variability differed dramatically across individual subjects,
they were surprisingly stable across four tasks with different stimuli, temporal structures, and attentional/cognitive
demands as well as across experimental sessions separated by one year. These experiments reveal that, in adults,
neural variability magnitudes are mostly solidified individual characteristics that change little with task or time, and are
likely to predispose individual subjects to exhibit distinct behavioral capabilities.
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Introduction
Neural activity in the mammalian brain is notoriously vari-

able/noisy over time (Vreeswijk and Sompolinsky, 1996;

Faisal et al., 2008). One way of studying neural variability
is by quantifying trial-by-trial variability in sensory cortices
across trials containing an identical stimulus. Such stud-
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Significance Statement

Brain activity varies dramatically from one moment to the next. Recent research has revealed that humans
exhibit different magnitudes of trial-by-trial neural variability, which explain differences in their perceptual
performance. How stable are neural variability magnitudes over time and across tasks? Here, subjects
performed four different experiments in two experimental sessions separated by one year. The results
revealed that neural variability magnitudes were remarkably consistent over time and across tasks,
suggesting that the magnitude of neural variability is a solidified neural characteristic that may predispose
individual subjects to exhibit different behavioral capabilities.
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ies often distinguish between variability that is apparent
before stimulus presentation and variability that is appar-
ent after stimulus presentation (Arieli et al., 1996; Church-
land et al., 2010; Goris et al., 2014). Recent research has
shown that prestimulus neural variability is considerably
larger than poststimulus variability, thereby demonstrating
that sensory stimulation reduces (“quenches”) ongoing neu-
ral variability (Churchland et al., 2010). Such variability
quenching was reported consistently across studies ex-
amining a variety of cortical areas and arousal states,
while using different types of stimuli, and when measuring
neural activity with electrophysiology in animals (Monier
et al., 2003; Finn et al., 2007; Mitchell et al., 2007;
Churchland et al., 2010, 2011; Hussar and Pasternak,
2010) or neuroimaging in humans (He, 2013; He and
Zempel, 2013; Schurger et al., 2015). An interesting ex-
ception is that during perceptual decision-making, neural
variability sometimes increases before the decision in
made (Churchland et al., 2011).

Several lines of evidence suggest that neural variability
affects behavioral performance. First, larger variability
quenching in sensory cortices is associated with better
perceptual performance, whether examined across trials
(Schurger et al., 2015) or across individual subjects (Arazi
et al., 2017). Second, actively allocating attention to a
visual stimulus improves behavioral performance not only
by gain modulation, but also by reducing the trial-by-trial
response variability of single neurons in visual cortex
(Mitchell et al., 2007) and the shared/correlated variability
across the local neural population (Cohen and Maunsell,
2009; Mitchell et al., 2009). Third, increasing dopamine
and norepinephrine levels increases the magnitude of
neural variability in animals (Aston-Jones and Cohen,
2005; Sakata et al., 2008) and generates behavior that is
more exploratory (Aston-Jones and Cohen, 2005). Fourth,
it has been suggested that larger ongoing cortical vari-
ability is associated with better cognitive performance
(McIntosh et al., 2008; Garrett et al., 2011, 2013).

While neural variability is under the flexible control of
attention and neuromodulation to a certain extent, many
of the mechanisms that generate and govern neural vari-
ability are likely to be a product of individual genetics and
early development. For example, mechanisms that govern
the reproducibility of neural activity by maintaining stable
excitation-inhibition balances (Turrigiano, 2011) and reli-
able synaptic transmission (Ribrault et al., 2011), are the
product of individual genetics and environmental expo-
sure during early critical periods (Hensch, 2005; Takesian
and Hensch, 2013). Since individual subjects have differ-
ent genetics and experience different environments, one
may expect intrinsic neural variability magnitudes to differ
across individuals and potentially predispose them to
different behavioral capabilities.

With this in mind, we hypothesized that neural variability
magnitudes of individual adult subjects are, to a large
extent, a solidified neural characteristic. A prediction of
this hypothesis is that individual subjects should exhibit
distinct magnitudes of neural variability that would be
reproducible across experiments with different stimuli,
tasks, and over time. To test this, we measured neural
variability in visual cortex with EEG while subjects per-
formed four tasks that differed in their structure, stimulus,
attentional demands, and cognitive requirements. The
same subjects performed all four experiments in two ex-
perimental sessions separated by a year. We then quan-
tified the neural variability magnitudes of individual
subjects in each of the experiments and experimental
sessions to determine their consistency across experi-
ments and over time.

Materials and Methods
Subjects

Twenty-four subjects (eight males, mean age during the
first session � 23.7 years, SD � 1.4) took part in this
study. All subjects had normal or corrected-to-normal
vision. The study was approved by the Ben-Gurion Uni-
versity Internal Review Board. Subjects provided written
informed consent during both experimental sessions and
were either paid for their participation or received re-
search credit.

Experimental design
All subjects completed four experiments in each of the

two experimental sessions. The gap in time between the
first and the second session was 12.3 months on average
(SD � 1.1). The study was performed in a dark and sound
proof room. The stimuli were presented using MATLAB
(Mathworks, Inc.) and Psychtoolbox (Brainard, 1997).

Checkerboard experiment
The visual stimulus consisted of a checkerboard annu-

lus with an inner radius of 0.6° visual angle and an outer
radius of 3.7° visual angle. The experiment contained 600
trials: 400 trials with the stimulus and 200 trials where the
stimulus was omitted. The stimulus was presented for 50
ms and followed by a randomized intertrial interval lasting
750-1200 ms. The experiment also included an orthogo-
nal color-detection task at fixation, which was intended to
divert attention away from the checkerboard stimulus.
Subjects were instructed to press a key whenever the
black fixation cross changed its color to gray. The exper-
iment contained 80 random color changes, which lasted
30 ms, and subjects had 1 s to respond. Correct and
incorrect responses were indicated by changing the fixa-
tion cross to green or red, respectively.

Choice reaction time (CRT) experiment
A black triangle or a circle was presented at the center

of the screen for 300 ms on each trial. Subjects were
instructed to press the right or left arrow keys, respec-
tively, as quickly as possible using their right index finger.
Each trial was followed by an intertrial interval of 1200 ms.
A total of 200 trials were presented, 100 trials with each of
the two stimuli.
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Go-no-go experiment
Stimuli and structure were identical to those described

in the CRT experiment, except that participants were
instructed to press the spacebar as quickly as possible
with their right index finger whenever they saw a circle
(“go” trial) and not when the triangle was presented (“no
go” trial). A total of 300 trials were presented and 80% of
the trials contained the go stimulus.

2-Back experiment
Stimuli were composed of four Chinese letters, pre-

sented at the center of the screen and participants were
asked to press the “J” key whenever the current letter
matched the one that was presented two trials before.
Each letter was presented for 500 ms and followed by an
inter trial interval of 500 ms. A total of 300 trials were
presented with third of them containing a 2-back repeat.

EEG and eye tracking recordings
EEG data were recorded using a 64-channel BioSemi

system (Biosemi Inc.), connected to a standard EEG cap
according to the international 10-20 system. Data were
referenced to the vertex electrodes. Electrooculography
(EOG) was recorded using two electrodes at the outer
canthi of the left and right eyes and one electrode placed
below the right eye. In the Checkerboard experiment, the
position of the right eye was recorded using an eye-
tracker (EyeLink 1000, SR Research) at a sampling rate of
1000 Hz.

EEG preprocessing
Data were analyzed using Matlab and the EEGLAB

toolbox (Delorme and Makeig, 2004). Continuous EEG
data were down sampled to 512 Hz, filtered using a 1- to
40-Hz band pass filter, and rereferenced to the bilateral
mastoid electrodes. EEG epochs were extracted using a
time window of 700 ms (200-ms prestimulus to 500-ms
poststimulus) and baseline correction was not performed
so as not to alter trial-by-trial variability in the prestimulus
interval. In the Checkerboard experiment, only trials
where stimulus was presented were extracted, in the CRT
experiment trials with both stimuli (circle or triangle) were
extracted, in the go-no-go experiment only the go trials
were extracted and in the 2-back experiment trials with
the four different stimuli (Chinese letters) were extracted.

Epochs containing absolute amplitudes that exceeded
70 �V or where the power exceeded 25 db in the 20- to
40-Hz frequency range were identified as containing eye
blinks or muscle artifacts, respectively, and were removed
from further analysis. In the Checkerboard experiment
identification of eye blinks was confirmed by eye tracking;
trials containing horizontal or vertical eye movements that
exceeded 1.5 SD of the mean were identified as trials
where fixation was not maintained (i.e., trials containing
saccades) and excluded from EEG analyses. Mean number
of trials across subjects and sessions after trials rejection in
the four experiments was 249 trials in the Checkerboard
experiment (SD � 50), 146 trials in the CRT experiment (SD �
39), 161 trials in the go-no-go experiment (SD � 53), and
254 trials in the 2-back experiment (SD � 46). The mean

number of trials did not differ between the first and sec-
ond experimental sessions.

EEG data analysis
Trial-by-trial variability was computed for each time

point in the extracted epochs (�200 to 500 ms) for each
of the 64 electrodes, in each subject separately. Trials
from the first and second experimental sessions were
analyzed separately. Absolute level of trial-by-trial vari-
ability in the prestimulus interval was computed within a
time window of �200- and 0-ms prestimulus, the variance
was computed across trials for each time point and then
averaged across the time points within the window. Ab-
solute level of trial-by-trial variability in the poststimulus
interval was computed in the same manner within a time
window of 150- to 400-ms poststimulus.

Relative trial-by-trial variability was computed by con-
verting the variability time courses to percentage change
units relative to the mean trial-by-trial variability in the
prestimulus period (�200 to 0 ms). We then estimated
variability quenching for each subject in each task and
session by computing the difference in variability between
the prestimulus period (�200 to 0 ms) and poststimulus
period (150–400 ms). We focused our analyses on the
four occipital electrodes (O1, O2, PO7, and PO8) with the
strongest visual responses.

To ensure that changes in variability were not driven by
changes in the mean EEG activity, we also performed a
control analysis, where we computed the coefficient of
variation (CV) by dividing the magnitude of variability by
the area under the curve of the mean ERP response (i.e.,
the ERP amplitude). This was computed separately for the
pre (�200 to 0 ms) or post (150–400 ms) stimulus inter-
vals. We then computed CV quenching as the relative
change in the CV between the pre- and poststimulus
periods (in units of percentage change). To examine the
temporal dynamics of the CV, we used a sliding window
with a width of 50 ms and overlap of 5 ms.

Behavioral data analysis
Mean accuracy, mean reaction time (RT), and RT vari-

ability (across trials) was computed for each subject and
each session, in CRT, go-no-go, and 2-back tasks as well
as the color-detection task in the Checkerboard experi-
ment. The first 10 trials in each experiment and trials with
RT below 200 ms were excluded from the analysis. Trials
with incorrect responses were excluded from the RT anal-
yses.

Statistical analysis
We assessed relationships across measures using

Pearson’s correlations. The statistical significance of the
correlation coefficients was assessed with a randomiza-
tion test where we shuffled the labels of the subjects
before computing the correlation coefficient. This proce-
dure was performed 10,000 times while shuffling the la-
bels across subjects randomly each time to generate a
null distribution for each pair of EEG/behavioral measures.
For the true correlation coefficient to be considered sig-
nificant it had to exceed the 97.5th percentile or lower
than the 2.5th percentile of this null distribution (i.e.,
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equivalent to a p � 0.05 in a two-tailed t test). Compari-
sons across experiments/tasks were performed using a
one-way ANOVA with task as the only factor, followed by
post hoc Tukey’s tests when the initial result indicated
significant differences. When performing correlations be-
tween neural variability and behavioral measures for each
of the 64 electrodes, we used the false discovery rate
(FDR) correction (Benjamini and Hochberg, 1995) to con-
trol for the multiple comparisons problem.

Electrode offset variability
The Biosemi EEG system utilizes active electrodes,

which do not yield a measure of impedance. Instead,
fluctuations in electrode offset (i.e., slow changes in the
voltage potential over time) are considered the best indi-
cation for the quality of EEG recording (Kappenman and
Luck, 2010). We, therefore, computed the electrode offset
variability across trials for each subject during each of the
experiments in each experimental session. We computed
the offset value for each trial, the variability across trials in
each of the four examined electrodes, and finally the
mean across electrodes in each experiment. We then
correlated offset variability with the EEG variability mea-
sures to check if differences in the quality of EEG record-
ings across individuals could explain our results.

Gaze variability
Gaze position was measured during the Checkerboard

experiment only. We computed the distance from the
fixation cross at each time point from stimulus onset to
500-ms poststimulus, then computed the standard devi-
ation across trials for each time point, and finally averaged
across all time points (0–500 ms) to generate a single
measure of gaze variability per subject. We correlated
gaze variability across the first and second sessions to
determine if individual subjects exhibited reproducible
gaze variability across sessions. Three subjects were ex-
cluded from this analysis due to difficulties in the calibra-
tion process of the eye tracker in one of sessions.

Results
Twenty-four subjects completed two experimental ses-

sions separated by one year. Each session included four
experiments that differed in their structure, stimulus, at-
tentional demands, and cognitive loads. In the first exper-
iment, subjects passively observed a checkerboard
annulus on each trial, while their task was to identify and
report infrequent color changes of the fixation cross. This
enabled us to measure neural variability magnitudes to an
unattended stimulus (i.e., the checkerboard). In the sec-
ond experiment, subjects performed a CRT task where
they responded with one button to a circle stimulus and
with another button to a triangle stimulus. This enabled us
to measure neural variability magnitudes to an attended
stimulus during a very easy task. In the third experiment,
subjects performed a go-no-go task where they re-
sponded only to the circles (go trials) and not to the
triangles (no-go trials). This enabled us to measure neural
variability magnitudes to an attended stimulus during a
somewhat harder task that required response inhibition.
In the final experiment, subjects performed a 2-back task

where they were presented with alternating Chinese let-
ters and instructed to respond whenever the current letter
matched the letter that was presented two trials before.
This enabled us to measure neural variability magnitudes
to an attended stimulus during a difficult working memory
task.

Differences in the attentional and cognitive demands of
the four tasks were clearly evident in the behavioral per-
formance of the subjects (Fig. 1). One-way ANOVA anal-
yses demonstrated that there were clear differences in the
accuracy rates (F�3, 92� � 89.2, p � 0.4 � 10�26), mean
RTs (F�3, 92� � 56.3, p � 0.9 � 10�20), and RT variability
(F�3, 92� � 106.8, p � 0.7 � 10�29) across the four tasks.
Post hoc Tukey’s tests revealed that there were significant
differences across all pairs of tasks (p � 0.01 for all
behavioral measures), except for the CRT and go-no-go
tasks. Specifically, accuracy rates were higher, mean RTs
were lower, and RT variability was lower in the CRT and
go-no-go tasks as compared with the color-detection
task in the Checkerboard experiment and the 2-back task.
In addition, accuracy rates were significantly higher, mean
RTs were lower, and RT variability was lower in the color-
detection task as compared with the 2-back task. This
demonstrates that the CRT and go-no-go tasks were
easier than the color-detection and 2-back tasks and that
the 2-back task was harder than the color-detection task.

Note that in the Checkerboard experiment, the relatively
difficult color-detection task diverted the subjects’ atten-
tion away from the checkerboard stimulus, thereby allow-
ing us to quantify trial-by-trial neural variability to an
unattended stimulus. In contrast, the 2-back task required
that subjects attend the stimulus, thereby allowing us to
quantify trial-by-trial neural variability to a strongly at-
tended stimulus.

Neural variability quenching
We examined trial-by-trial neural variability as a func-

tion of time before and after stimulus presentation in each
of the four experiments (Fig. 2). Trial-by-trial variability
was reduced (i.e., quenched) following stimulus presen-
tation in all experiments and in both recording sessions

Figure 1. Behavioral performance measures. Mean across sub-
jects and sessions for accuracy (A), RT (B), and RT variability (C)
in each of the four tasks. Error bars: SEM across subjects.
Asterisks: significant differences across experiments (post hoc
Tukey’s tests, p � 0.01). One asterisk: significant differences
between CB experiment and choice reaction time (CRT) or GNG
experiments. Two asterisks: significant differences between 2B
experiment and all other experiments. CB, Checkerboard; GNG,
go-no-go; 2B, 2-back.
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performed a year apart. Variability quenching was sus-
tained from 150 to 400 ms after stimulus presentation and
most evident in occipital electrodes (O1, O2, PO7, and
PO8). We quantified variability quenching as the relative
change (in units of percentage change) between pre-
stimulus (�200 to 0 ms) and poststimulus (150–400 ms)
periods, while focusing our analyses on the four elec-
trodes noted above. Note that we filtered our EEG data
using a bandpass filter (1–40 Hz; see Materials and Meth-
ods) as commonly performed in many EEG experiments.
This means that the quantified trial-by-trial variability was
generated by EEG activity in this frequency range and
mostly dominated by lower frequencies.

Neural variability is a stable neural characteristic
We quantified three measures of trial-by-trial variability

for each subject. Absolute trial-by-trial variability was
quantified in the prestimulus (�200 to 0 ms) and post-
stimulus (150–400 ms) periods for each subject, in each
of the four experiments, and each of the experimental
sessions (see Materials and Methods). Variability quench-
ing was quantified as the difference between variability
magnitudes in the pre- and poststimulus periods. All three

measures of variability were strongly and significantly corre-
lated across the two EEG recording sessions in each of the
four experiments (r�24� � 0.58, p � 0.003; Fig. 3). This
demonstrates that the neural variability magnitudes of indi-
vidual subjects barely changed over a one-year period.

Individual variability magnitudes were also strongly corre-
lated across experiments despite their distinct stimuli, temporal
structures, and attentional/cognitive demands. Given the
strong correlations across sessions (Fig. 3), we averaged each
of the variability measures across the two sessions. We then
compared individual variability magnitudes across experiment
pairs. This analysis revealed strong, positive, and significant
correlations across all pairs of experiments when examining
variability quenching (r�24� � 0.74, p � 0.4 � 10�4;
Fig. 4), prestimulus variability (r�24� � 0.86, p �
0.8 � 10�7; Table 1), or poststimulus variability (r�24� �
0.89, p � 0.4 � 10�8; Table 1) magnitudes.

Neural variability and behavioral performance
We examined the relationship between individual mea-

sures of neural variability and behavioral performance by
computing the correlations between each of the three
behavioral measures (accuracy rate, RT, and RT variabil-

Figure 2. Temporal and spatial dynamics of trial-by-trial neural variability. Each time course represents the changes in relative
trial-by-trial variability (percentage-change units relative to the prestimulus period, mean across the four selected electrodes) during
the first (black) or second (gray) experimental session, which were separated by one year. Each panel displays the results of a different
experiment. Gray background: 150- to 400-ms poststimulus period with sustained variability quenching that was selected for further
analyses. Insets, Topographic maps of variability quenching magnitudes during the 150- to 400-ms window, demonstrating that
quenching was strongest in occipital electrodes across all four experiments.
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ity) and each of the three variability measures (prestimulus
variability, poststimulus variability, and variability quench-
ing). No significant correlations were found when we sep-
arately examined data from the first (accuracy: � 0.13 �
r�24� � 0.22, p � 0.31; RT: � 0.28 � r�24� � 0.23, p �
0.18;RT variability: �0.34 � r�24� � 0.3, p � 0.1) or sec-
ond (accuracy: � 0.32 � r�24� � 0.28, p � 0.12; RT:
� 0.13 � r�24� � 0.31, p � 0.13;RT variability: � 0.27 �
r�24� � 0.26, p � 0.2) experimental sessions, nor when
we computed the mean behavioral/variability measures
across sessions (Table 2).

In an additional analysis we examined these relation-
ships separately for each electrode and present the re-
sults as a spatial correlation map (Fig. 5). The spatial

correlation maps differed across experiments, suggesting
a lack of robust relationship between neural variability and
behavioral measures in any of the electrodes. Further-
more, there were no significant correlations in any of the
electrodes following FDR correction.

Signal strength and trial-by-trial variability
Previous studies have demonstrated that trial-by-trial

variability is associated with the mean strength of the
neural response (Churchland et al., 2010). To demonstrate
that the findings described above are independent of
between-subject differences in the mean EEG response
amplitudes, we also performed the analysis using the CV
(trial-by-trial variability divided by the mean EEG re-

Figure 3. Individual neural variability magnitudes were consistent across experimental sessions separated by one year. Scatter plots
present the magnitudes of variability quenching (A), prestimulus variability (B), and poststimulus variability (C) in individual subjects
during the first and second experimental sessions for each of the four experiments. The unity line is drawn for reference in each panel.
Each point represents a single subject. Asterisks: significant correlation as assessed by a randomization test (p � 0.003). Pearson’s
correlation coefficients and p values are noted in each panel.
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sponse; see Materials and Methods). As with trial-by-trial
variability (Fig. 2), the CV also exhibited a strong reduction
following stimulus presentation, within the same time-
window, across all four experiments (Fig. 6).

Most importantly, the CV magnitudes of individual sub-
jects exhibited significant positive correlations across
sessions (quenching: 0.61 � r�24� � 0.82, prestimulus:
0.48 � r�24� � 0.77, poststimulus: 0.59 � r�24� �
0.76;p � 0.018) and across most of the tasks (quenching:
0.44 � r�24� � 0.91, prestimulus: 0.41 � r�24� � 0.66,

poststimulus: 0.43 � r�24� � 0.78;p � 0.048). Exceptions
included the following: Checkerboard and CRT (prestimu-
lus: r�24� � 0.26, p � 0.22; poststimulus: r�24� �
0.26, p � 0.22), Checkerboard and go-no-go (poststimu-
lus: r�24� � 0.15, p � 0.49), and Checkerboard and
2-back (prestimulus: r�24� � 0.36, p � 0.08). Note that
even in these cases, correlations were always positive
and most were close to significant. Individual magnitudes
of CV were, therefore, entirely consistent over time and
mostly consistent across tasks.

Figure 4. Individual variability quenching magnitudes were consistent across experiments. Scatter plots demonstrate the relationship
between variability quenching magnitudes in each pair of experiments. Each dot represents a single subject. The linear fit is drawn
for reference in each panel. Asterisks: significant correlation as assessed by a randomization test (p � 0.4x10�4). Pearson’s correlation
coefficients and p values are noted in each panel.

Table 1. Individual magnitudes of prestimulus (top row) and poststimulus (bottom row) neural variability were strongly
correlated across experiments

CB-CRT CB-GNG CB-2B CRT-GNG CRT-2B GNG-2B
Prestimulus r � 0.86

p � 0.5�10�7
r � 0.93
p � 0.8�10�10

r � 0.86
p � 0.8�10�7

r � 0.96
p � 0.3�10�13

r � 0.89
p � 0.6�10�8

r � 0.93
p � 0.8�10�10

Poststimulus r � 0.9
p � 0.1�10�8

r � 0.9
p � 0.2�10�8

r � 0.89
p � 0.4�10�8

r � 0.95
p � 0.1�10�11

r � 0.9
p � 0.1�10�8

r � 0.94
p � 0.1�10�10

Pearson’s correlation coefficients and p values are noted for each pair of experiments. CB, Checkerboard; CRT, choice reaction time; GNG, go-no-go; 2B,
2-back.

Table 2. Relationship between measures of neural variability and behavioral measures

Accuracy Mean RT RT variability

Quench Pre Post Quench Pre Post Quench Pre Post
CB r � 0.17

p�0.43
r � �0.21
p � 0.3

r � �0.12
p � 0.57

r � 0.12
p � 0.55

r � �0.05
p � 0.8

r � 0
p � 0.98

r � �0.02
p � 0.92

r � �0.06
p � 0.77

r � �0.13
p � 0.54

CRT r � 0.13
p � 0.55

r � �0.05
p � 0.82

r � 0.07
p � 0.75

r � 0.14
p � 0.5

r � �0.05
p � 0.8

r � 0.17
p � 0.4

r � �0.1
p � 0.63

r � 0.2
p � 0.35

r � 0.22
p � 0.29

GNG r � �0.03
p � 0.88

r � �0.15
p � 0.48

r � �0.18
p � 0.38

r � 0.08
p � 0.7

r � 0.04
p � 0.86

r � 0.17
p � 0.41

r � 0.02
p � 0.93

r � 0.14
p � 0.5

r � 0.29
p � 0.16

2B r � �0.13
p � 0.54

r � 0.13
p � 0.53

r � 0.21
p � 0.32

r � �0.2
p � 0.35

r � 0.1
p � 0.62

r � 0
p � 0.96

r � �0.36
p � 0.09

r � 0.22
p � 0.3

r � 0
p � 0.99

Pearson’s correlation coefficients and p values for each behavioral (accuracy, mean RT, or RT variability) and each variability (quenching, prestimulus, or
poststimulus) measure. CB, Checkerboard; CRT, choice reaction time; GNG, go-no-go; 2B, 2-back.
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Alternative sources of trial-by-trial variability
We examined whether non-neural sources of variability,

such as gaze variability or the quality of EEG recordings
could explain our results regarding consistency across
tasks or sessions. We used eye tracking data from the
Checkerboard experiment to demonstrate that individual
magnitudes of neural variability quenching were not sig-
nificantly correlated with gaze position variability in either
the first (r�21� � �0.16, p � 0.49, uncorrected) or second
(r�21� � �0.29, p � 0.2, uncorrected) recording session.
Furthermore, rerunning our analysis after regressing out
individual measures of gaze position variability revealed
equivalent results to those described above (Figs. 3, 4).
Specifically, variability magnitudes remained correlated
over time (quenching: r�21� � 0.78, p � 0.3x10�4; pre-
stimulus: r�21� � 0.76, p � 0.6x10�4; poststimulus:
r�21� � 0.6, p � 0.0036). This reassured us that the
consistent magnitudes of neural variability described
above were not associated with the ability of the sub-
jects to maintain fixation.

To demonstrate that our results were not due to indi-
vidual differences in the quality of the EEG recordings, we
computed the electrode offset variability (see Materials

and Methods). Electrode offset variability, was not signif-
icantly correlated with the magnitude of variability
quenching in any of the experiments performed in either
the first or second session� � 0.25 � r�24� � 0.24, p �
0.24, uncorrected). Furthermore, rerunning our analysis
after regressing out individual magnitudes of electrode
offset variability revealed equivalent results to those de-
scribed above (Figs. 3, 4). Specifically, variability magni-
tudes remained correlated over time (quenching: 0.8 � r
�24� � 0.89, prestimulus: 0.76 � r�24� � 0.92, poststimu-
lus: 0.59 � r�24� � 0.74;p � 0.0025) and across tasks
(quenching: 0.57 � r�24� � 0.93, prestimulus: 0.73 � r
�24� � 0.96, poststimulus: 0.76 � r�24� � 0.94, p �
0.004).

Discussion
Our results demonstrate that neural variability magnitudes

differ across adult subjects in a consistent and reproducible
manner over long periods of time and across tasks with
different stimuli, structures, and attentional/cognitive de-
mands. This was true for neural variability magnitudes in
either pre- or poststimulus periods and for variability
quenching magnitudes (Figs. 3, 4; Table 1). These results

Figure 5. Scalp maps representing the correlation between measures of neural variability (quenching, prestimulus, or poststimulus)
and behavioral measures: accuracy (A) or RT (B). Color bar: magnitude of Pearson’s correlation coefficients.
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suggest that neural variability magnitudes in sensory cor-
tices are mostly stable individual characteristics that are
modulated to a relatively small degree by task demands.
While these reliable individual differences in neural vari-
ability magnitudes were not associated with cognitive
performance measures in the current study (Fig. 5), they
have previously been associated with perceptual perfor-
mance measures in several studies using different tasks
and neuroimaging techniques (Schurger et al., 2010,
2015; Xue et al., 2010; Arazi et al., 2017). These stable
neural variability magnitudes may, therefore, predispose
individual subjects to exhibit distinct behavioral capabili-
ties.

Flexibility of neural variability
To what degree is neural variability under flexible be-

havioral control? Previous electrophysiology studies have
reported that visual attention reduces trial-by-trial re-
sponse variability while improving the accuracy of behav-
ioral performance (Mitchell et al., 2007, 2009; Cohen and
Maunsell, 2009) . In contrast, raising the levels of dopa-
mine and/or norepinephrine increases the magnitude of
ongoing neural variability (Aston-Jones and Cohen, 2005;
Sakata et al., 2008; Garrett et al., 2015). This may gener-
ate behavioral states associated with exploration, where
the subject behaves in a more variable manner that en-
ables learning through trial-and-error (Aston-Jones and
Cohen, 2005).

While attention and neuromodulation are invaluable
mechanisms for flexibly changing the magnitude of neural
variability and consequent behaviors, individual differ-
ences in neural variability magnitudes are also governed
by many other neurophysiological mechanisms including
the noisy response characteristics of peripheral sensors
(Schneeweis and Schnapf, 1999), the stochastic nature of
synaptic transmission (Ribrault et al., 2011), and the dy-
namic changes caused by neural adaptation (Clifford
et al., 2007) and synaptic plasticity (Feldman, 2009). Ad-
ditional neural variability is generated by adjustments of
the excitation/inhibition balance (Turrigiano, 2011) and
continuous interaction and competition across large neu-
ral populations (Kelly et al., 2008). These mechanisms are
likely to be the product of genetic and environmental
factors that govern the development and solidification of
neural circuits during critical periods (Hensch, 2005).

We believe that our results highlight the role of these
later mechanisms in creating and maintaining stable indi-
vidual differences in neural variability. While attention and
neuromodulation are critical for adaptive behavior, we
speculate that their ability to alter the neural variability mag-
nitude of an adult individual is relatively small and limited by
these static intrinsic mechanisms. Future research could
further quantify the flexibility of neural variability in individual
subjects and determine if some individuals are more flex-
ible than others. Furthermore, studying measures of neu-
ral variability in young children would be particularly

Figure 6. Temporal dynamics of the CV in percentage change units relative to prestimulus period. Each panel presents results from
a single experiment in the first (black) and second (gray) experimental sessions. Gray background: time window (150-400 ms) of
sustained variability quenching that was selected for the previous analyses.
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interesting for understanding how neural variability
changes during development. Analogous behavioral re-
search in humans (MacDonald et al., 2006) and birds
(Ölveczky et al., 2011) has already shown that behavioral
variability diminishes during early development and sta-
bilizes in adulthood.

The behavioral significance of neural variability
There is ongoing debate regarding the potential behav-

ioral significance of different measures of neural variabil-
ity. On the one hand, several studies have demonstrated
that smaller trial-by-trial neural variability is associated with
better perceptual performance and memory encoding. For
example, fMRI studies have reported that trial-by-trial
variability is smaller on trials where a threshold-level stim-
ulus is detected (Schurger et al., 2010) and on trials where
a stimulus is later remembered (Xue et al., 2010) . Simi-
larly, MEG and EEG studies have reported that neural
variability quenching in sensory cortices is larger on trials
where a threshold-level stimulus is detected (Schurger
et al., 2015) and in individuals with lower (better) contrast
discrimination thresholds (Arazi et al., 2017). Faster RTs
were apparent in trials with smaller trial-by-trial variability
in firing rates of macaque V4 neurons (Steinmetz and
Moore, 2010), smaller trial-by-trial fMRI variability (He,
2013) and in trials where ECOG activity that was more
similar to the mean response across trials (He and Zem-
pel, 2013). Furthermore, excessive neural variability in
sensory cortices has been reported in different disorders,
including autism (Milne, 2011; Dinstein et al., 2012), ADHD
(Gonen-Yaacovi et al., 2016), and schizophrenia (Yang
et al., 2014), while electrophysiology studies have re-
ported that neural responses are more variable in elderly
animals (Turner et al., 2005; Yang et al., 2009) and hu-
mans (Anderson et al., 2012) who exhibit cognitive de-
cline. These results are in line with signal detection theory
principles, which suggest that intrinsic variability/noise
reduces the detection and discrimination abilities of a
perceptual system (Green and Swets, 1966).

Other studies, however, have reported that younger
individuals exhibit larger fMRI time-course variability than
elderly individuals (Garrett et al., 2010) and that this co-
incides with faster and more consistent responses when
performing cognitive tasks such as perceptual matching,
attentional cueing, and delayed match to sample (Garrett
et al., 2013). It has been proposed that such increased
ongoing variability may be beneficial for cognitive perfor-
mance, because it allows for higher neural complexity and
enables a neural network to flexibly switch between dif-
ferent states (McIntosh et al., 2008). Note that certain
tasks, such as perceptual decision-making, may generate
an increase in neural variability before the decision is
made (Churchland et al., 2011). In our study, we note that
neural variability increased following stimulus presenta-
tion in the CRT task in fronto-central electrodes (Fig. 2).
The specificity of this finding to the CRT task and its
potential cognitive significance remain to be determined.

In the current study, we did not find any significant
relationships between measures of cognitive performance
and measures of neural variability despite the use of

several different tasks with distinct stimuli, structures, and
attentional/cognitive demands. Note that this disappointing
result was apparent across two independent experimental
sessions. This suggests that the relationship between neural
variability and cognitive performance is not as strong and
clear as previously suggested (Garrett et al., 2013), in
contrast to the relationship with perceptual performance,
which has been reproduced by several labs using differ-
ent neuroimaging and analysis techniques (Schurger
et al., 2010, 2015; Xue et al., 2010; Arazi et al., 2017).
Regardless of the precise relationship between neural
variability magnitudes and behavioral performance, the
main contribution of this study is in demonstrating that
neural variability magnitudes differ across individuals in a
reliable manner. These individual differences in neural
variability are likely to constrain individual behavioral per-
formance at some level, whether only with respect to
perceptual performance or also in other behavioral do-
mains.

Signal strength and trial-by-trial variability
Previous electrophysiology studies have demonstrated

that trial-by-trial variability scales with the mean ampli-
tude of the examined neural responses (Shadlen and
Newsome, 1994). To examine trial-by-trial variability inde-
pendently of the mean response most electrophysiology
studies, therefore, use the Fano factor or the CV, which
normalize trial-by-trial variability by the mean response
(Churchland et al., 2010; Goris et al., 2014). Animal stud-
ies, however, have rarely examined the behavioral impact
of neural variability magnitudes.

In contrast, human neuroimaging studies that have ex-
amined the relationship between response variability and
behavior using fMRI and EEG have rarely reported CV
(Garrett et al., 2013, 2015; He and Zempel, 2013; Gonen-
Yaacovi et al., 2016; Arazi et al., 2017). Nevertheless, to
relate our findings to both literatures, we conducted our
analyses once using trial-by-trial variability measures and
again using the CV measure. We found almost equivalent
results in both cases, which revealed that large between-
subject differences in variability magnitudes are consis-
tent across experimental sessions and tasks even when
normalizing trial-by-trial variability by the mean EEG re-
sponse. Consistent differences in neural variability mag-
nitudes across subjects are, therefore, likely to reflect
differences in underlying physiologic mechanisms that are
specific to the variability of neural activity rather than the
strength of neural activity.

Measurement noise
Measures of trial-by-trial neural variability may be biased

by subject-specific measurement noise of non-neural origin.
We examined two potential sources of non-neural variability
in our study: eye-gaze variability (indicative of the stability
of fixation across trials) and trial-by-trial variability in elec-
trode offset (indicative of the stability of the EEG record-
ing). We did not find any significant correlation between
electrode-offset variability or gaze-position variability and
neuronal measures of variability. Furthermore, regressing
out individual magnitudes of electrode offset variability or
gaze position variability did not alter the results. These
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additional analyses demonstrate that the individual mag-
nitudes of trial-by-trial variability were not associated with
these potential sources non-neural measurement noise.
With that said, additional studies examining the consis-
tency of individual neural variability magnitudes across
different neuroimaging techniques (e.g., fMRI and EEG)
would be necessary for demonstrating the potential ro-
bustness of these findings across techniques with differ-
ent types/sources of measurement noise.

Conclusions and Future Directions
While neural variability is to some degree under flexible

control of attention and neuromodulation, our results
demonstrate that individual differences in neural variability
magnitudes are remarkably consistent across distinct
tasks and over long periods of time. We, therefore, pro-
pose that neural variability magnitudes represent mostly
stable between-subject differences in fundamental neural
characteristics that were forged by genetics and environ-
mental exposures during early development. These differ-
ences are likely to predispose individual subjects to
exhibit distinct behavioral capabilities. Revealing how
neural variability magnitudes develop during childhood
and how they may be manipulated in adulthood are likely
to be of great interest for further basic and clinical re-
search (Dinstein et al., 2015).
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