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SUMMARY

How does the human motor system encode our
incredibly diverse motor repertoire in an efficient
manner? One possible way of encoding movements
efficiently is to represent them according to their
shape/trajectorywithout regard to their size, by using
neural populations that are invariant across scale.
To examine this hypothesis, we recorded move-
ment kinematics and functional magnetic resonance
imaging (fMRI) while subjects wrote three letters in
two different scales. A classification algorithm was
trained to identify each letter according to its asso-
ciated voxel-by-voxel response pattern in each of
several motor areas. Accurate decoding of letter
identity was possible in primary motor cortex (M1)
and anterior intraparietal sulcus (aIPS) regardless
of the letter’s scale. These results reveal that large,
distributed neural populations in human M1 and
aIPS encode complex handwriting movements
regardless of their particular dynamics and kine-
matics, in a scale-invariant manner.

INTRODUCTION

Handwriting is one of the most exciting achievements of the

human motor system, requiring extreme dexterity and precision.

A remarkable feature of handwriting is that the geometrical

shape of an individual’s handwriting remains consistent across

different scales and even when executed with different effectors

(van Galen and Teulings, 1983; Raibert, 1977; Wright, 1990).

These findings have been interpreted as evidence for a hierarchi-

cal organization of motor control (Bernstein, 1935; Georgopou-

los, 1990; Wright, 1990) where movements are first planned

according to their path/geometry and then translated into pre-

cise kinematics and dynamics (Viviani and Flash, 1995). Such a

structured organization is thought to enable efficient encoding

of our vast and diverse motor repertoire. But how exactly is

this hierarchal motor control implemented by neural populations

in different motor system areas?

Common descriptions of the motor system’s hierarchy sug-

gest that the anterior intraparietal sulcus (aIPS) and adjacent

parietal regions are high-level areas, which contain neural popu-

lations that plan future movements (Snyder et al., 1997) and
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encode movements according to their abstract intentions or

goals (Hamilton and Grafton, 2006). In contrast, primary motor

cortex (M1) is often described as a low-level area containing

neural populations that encode instantaneous dynamic (Evarts,

1968; Kakei et al., 1999) and/or kinematic (Georgopoulos et al.,

1982; Moran and Schwartz, 1999) movement variables, which

govern the moment-by-moment execution of movements. It is

important to note, however, that this view is mostly based on

studies with nonhuman primates who were trained to perform

simple movements such as applying a static force (Kakei et al.,

1999), moving a single joint (Cheney and Fetz, 1980), or perform-

ing straight reaching movements toward peripheral targets

(Georgopoulos et al., 1982). Studies that have employed more

elaborate movements have challenged this view and suggested

that M1 neurons encode more complex time-evolving trajec-

tories (Hatsopoulos et al., 2007; Hocherman and Wise, 1991)

or goal-directed actions (Graziano et al., 2002a) in a manner

that is invariant to specific movement details. These later studies

suggest that the hierarchical organization of the motor system is

less distinct than originally proposed.

In the current study we focused on a particular aspect of hier-

archical motor control: invariance to movement scale. Subjects

wrote three different letters at two different scales and did not

receive any visual feedback of their moving hand, while we

recorded their brain activity with fMRI and their movement kine-

matics via a touch screen. Writing the same letter at different

scales alters the executed movement dynamics (e.g., relative

activity of proximal versus distal muscles and joints [Lacquaniti

et al., 1987]) and kinematics (e.g., average movement speed

and duration [Wright, 1990]) but retains the movement’s relative

shape. Multivariate classification analyses revealed that it was

possible to accurately decode both the identity and the scale

of each executed letter according to its associated voxel-by-

voxel response patterns in M1 and aIPS. Most importantly, it

was possible to accurately decode the identity of each letter

regardless of its scale (i.e., training the classifier on small move-

ments enabled accurate decoding of large movements and vice

versa).We interpret these results as evidence for the existence of

large distributed neural populations in M1 and aIPS that encode

the shape of a movement in a relatively abstract manner, regard-

less of its precise scale. These results challenge descriptions of a

strict hierarchy in which M1 is a low-level brain area concerned

only with encoding instantaneous movement dynamics. Instead,

these findings support descriptions of more distributed, abstract

(scale-invariant) movement encoding across multiple levels of

the motor hierarchy.
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Figure 1. Experimental Setup and Design

(A) Kinematics were recorded with an MRI-

compatible digitizing tablet. Subjects viewed a

back-projectedscreen througha tiltedmirror,which

prevented any visual feedback of the movements.

(B) Each trial began with an auditory instruction

indicating the letter and scale to be executed (e.g.,

‘‘large n’’), whichwas followed by the fixation cross

turning green (subject had 4 s to write the letter),

then red (subject had 4 s to return to a starting

point), and then black (subject had 4–8 s of rest).
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RESULTS

Subjects wrote three lowercase letters (either a, s, or n) in large or

small scales (1:2 ratio) without any visual feedback during several

hundred trials.Movement kinematicswere recordedwith a touch

screen and brain activity was recorded by fMRI (Figure 1).

General Movement Parameters
Subjects were successful in keeping a scaled ratio of �1:2 be-

tween small and largemovements despite the lack of visual feed-

back. Mean letter size (measured by path length) of large and

small a, s, and n equaled 32.0, 22.6, 32.2 cm, and 13.1, 10.5,

13.0 cm, respectively (SEM: 1.91, 1.13, 1.82 and 0.88, 0.69,

0.76) (Figure 2A). Each large letter was executedwith significantly

faster speed and longer duration than the equivalent small letter

(paired t tests,Bonferroni correctedp<0.001,Figures2Band2C).

Similarity of Path Shape
Path shape was similar across trials of the same letter regardless

of size (Figure 3). Shape similarity was assessed separately for

each subject via the Procrustes transformation (see Experi-

mental Procedures). The Procrustes distance is an index with a

range of 0–1 that is used to compare pairs of movement paths

while ignoring their velocity, absolute position, orientation, and

scale (a distance of zero indicates absolute shape identity).

The Procrustes distances between trials of the same letter

were small, regardless of their scale (mean < 0.1 for all three let-

ters, averaged across subjects, SEM < 0.004), indicating that the

shape of each letter across trials and scales was highly similar.

For comparison, the Procrustes distances across trials contain-

ing different letters were much larger (mean = 0.43, pooled

across letters and subjects, SEM 0.02).

We also assessed the correlation between velocity profiles of

same letter identity across scales after normalizing their dura-

tion. Normalized velocity profiles of the same letter written in
Neuron 81, 452–462
large and small scales were indeed

strongly correlated (correlation values:

a, s, n = 0.93, 0.96, 0.94, averaged

across subjects, SEM: 0.015, 0.007,

0.011) (Figure S1 available online).

Univariate Analysis and ROI
Selection
A whole-brain statistical parameter map

(SPM) analysis showed that the typical
cortical and subcortical motor areas responded robustly during

letter-writing trials (Figure 4). We used the functional responses

of each subject to identify eight motor regions of interest

(ROIs) individually in each subject: left primary motor cortex

(M1), left anterior intraparietal sulcus (aIPS), left dorsal premotor

cortex (dPM), left ventral premotor cortex (vPM), supplementary

motor area (SMA), left putamen (PTM), right cerebellum (CRB),

and left insular cortex (INS). These motor ROIs were defined

based on a combination of anatomical and functional criteria

(see Experimental Procedures). Two control ROIs that did not

exhibit activation during movement execution were also identi-

fied: left orbito-frontal cortex (OFC) and an out-of-brain region

(Out of brain). Because motor control is clearly lateralized, all

ROIs were selected in the contralateral left hemisphere

(movements were performed with the right hand), apart for the

ipsilateral right cerebellum ROI (Nitschke et al., 1996). Anatom-

ical landmarks and sizes of all ROIs are listed in Table 1.

All motor cortical and subcortical ROIs exhibited significantly

stronger fMRI responses during execution of large letters than

during execution of small letters, except vPM (paired t tests,

Bonferroni corrected p < 0.05) (Figure S2).

Classification of Letter Scale
An initial step in assessing scale invariance is to identify the

response components that are associated withmovement scale.

Because the mean response of most motor system ROIs was

significantly larger during execution of large letters (Figure S2),

we first tested whether the overall mean ROI response amplitude

enabled accurate decoding of letter scale. Randomly selected

groups of three trials from each letter and scale were averaged

to create exemplars/samples with better signal-to-noise ratio

for the classification procedures (see Experimental Procedures).

We trained a classifier to distinguish letter scale on exemplars

belonging to each letter separately (within-letter classification)

and tested it by a ‘‘leave one out’’ cross-validation scheme. We
, January 22, 2014 ª2014 Elsevier Inc. 453



Figure 2. General Movement Parameters

(A) Path length was approximately twice as large

for the large letters than for the small letters.

(B) Mean speed was significantly higher for the

large letters.

(C) Movement duration was significantly longer for

the large letters.

Black bars, large-scale movements; white bars,

small-scale movements. All results are averaged

across trials and across subjects. Error bars, SEM

across subjects. Asterisks: Bonferroni corrected

p < 0.001.
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also performed an equivalent analysis across letters (across-let-

ter classification) where we trained the classifier with exemplars

of two letters and tested the ability to decode movement scale

on trials of the third letter. It was possible to decode the scale

of a letter from the corresponding mean ROI amplitude with sig-

nificant above-chance accuracy in all motor ROIs except for vPM

(Figures 5 and S3): M1 (within letter, 66%–82%; across letters,

59%–79%), aIPS (65%–76%; 62%–74%), dPM (64%–68%;

59%–68%), SMA (67%–76%; 64%–74%), PTM (60%–66%;

58%–66%), CRB (64%–72%; 60%–71%), and INS (62%–70%;

58%–66%). Randomization analyses were performed to deter-

mine whether the decoding accuracy in each ROI was signifi-

cantly above chance (see Experimental Procedures).

We next performed the same classification analyses on the

voxel-by-voxel response patterns of single exemplars after

de-meaning each trial such that the mean response across the

ROI equaled zero. The point of this analysis was to determine

whether small and large movements differed not only in their

mean responses, but also in their voxel-by-voxel response pat-

terns. Classification of de-meaned response patterns yielded

significantly above-chance decoding accuracy of scale, both

within-letter and across-letters, in all motor ROIs (Figures 5

and S3): M1 (within letter, 83%–92%; across letters,

76%–89%), aIPS (84%–88%; 77%–87%), dPM (73%–82%;

71%–81%), vPM (64%–75%; 68%–75%), SMA (78%–87%;

73%–84%), PTM (62%–67%; 62%–69%), CRB (78%–84%;

69%–78%), and INS (67%–79%; 70%–77%). The ability to

decode letter scale across letters (i.e., when training the classi-

fier on two letters and testing it on another) suggests that each

scale was associated with a scale-specific voxel-by-voxel

response pattern, which was similar across letters.

Specific movement-scale response components were, there-

fore, evident in both the mean ROI response and the de-meaned

voxel-by-voxel pattern of all motor system ROIs (except for

vPM).

Classification of Letter Identity
We performed equivalent classification analyses to determine

whether it was possible to decode letter identity from the re-

sponses of different motor ROIs. Classifier training and testing

was performed separately for large-scale movements and

small-scale movements (within-scale classification) and also

across scales (across-scale classification). Using the mean

ROI amplitudes to decode letter identity yielded accuracy mea-

sures that were indistinguishable from chance in all ROIs except

for the decoding of large letter identities in M1 (Figures 6 and S4).
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This revealed that letter identity, unlike letter scale, could not be

accurately identified according to mean ROI responses.

Using the voxel-by-voxel response patterns of each ROI, how-

ever, revealed significant above-chance decoding accuracies of

letter identity when assessing small and large exemplars sepa-

rately: M1 (68%, large; 61%, small), aIPS (61%; 52%), dPM

(53%; ns), vPM (49%; ns), SMA (58%; 47%), PTM (43%; ns),

CRB (53%; 50%), and INS (49%; 47%) (Figures 6 and S4).

Most importantly, decoding letter identity across scales, by

training the classifier on large letters and testing on small letters

and vice versa, also revealed significant above-chance accu-

racies in both directions, but only in M1 (51%, large to small;

56%, small to large), aIPS (43%; 46%), and INS (43%; 43%).

To dissociate letter-specific and scale-specific response

components, we performed a final classification analysis after

regressing-out the scale-specific response patterns. For each

ROI, we extracted the mean response pattern across all large-

scale trials from each large-scale trial and the mean response

pattern across all small-scale trials from each small-scale trial.

This manipulation reduced scale-decoding accuracies in all

ROIs to chance levels, yet slightly improved letter-identity

decoding in aIPS andM1 (Figures 6 and S4). The accuracy of let-

ter-identity decoding remained significantly above chance when

performed separately for small and large letter exemplars in M1

(64%, large; 57%, small), aIPS (57%; 52%), SMA (55%; 47%),

CRB (50%; 50%), and INS (45%; 45%) and when performed

across small and large letter exemplars in M1 (56%, large

to small; 57%, small to large), aIPS (50%; 51%), and SMA

(46%; 46%).

M1 and aIPS were, therefore, the only twomotor system areas

that exhibited robust above-chance decoding accuracies of let-

ter identity in all within-scale and across-scale analyses. These

results suggest that the letter-specific responses in these areas

were invariant to the scale of the executed movement/letter,

and therefore extracting all scale-related modulations from the

voxel-by-voxel responses did not alter their letter-decoding

accuracies.

Pattern Correlation Analysis
A complementary correlation analysis was conducted to further

establish whether letters of similar identity but different size

shared similar response patterns. We averaged across trials to

compute the mean response pattern of each letter in each scale

and correlated patterns across scales. Voxel-by-voxel response

patterns of a letter written in small and large scales were signif-

icantly correlated across letters with the same identity, but not



Figure 3. Similarity of Path Shape across Trials and Scales for Three Representative Subjects
Top: Movement traces of single trials (small letters, light orange; large letters, light blue) and their means (darker colors) after performing the Procrustes

transformation on single trials, separately for each scale.

Bottom:Meanmovement traces after performing the Procrustes transformation across scales. Each panel represents a single subject. Note the clear consistency

in shape across trials and scales.
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across letters with different identities, in M1, aIPS, and SMA

(randomization test, p < 0.001). INS showed marginally signifi-

cant correlation values (p < 0.01). All other ROIs exhibited

correlation values that were not significant (Figures 7 and S5).

Statistical significance of the correlation values was again

assessed by a randomization test.

Searchlight Analysis
A whole-brain searchlight analysis was performed to identify let-

ter-encoding regions without defining a priori regions of interest

(Kriegeskorte et al., 2006). This enabled us to explore decoding

accuracies in the entire brain while using smaller ROIs (27 voxels

per searchlight ROI as opposed to�300 voxels in the predefined

ROIs), which were less prone to over-fitting issues given the

small number of samples in each condition (�42 trials per letter

at each scale). We performed equivalent letter-classification

analyses to those described above for the predetermined ROIs

in each of the searchlight ROIs. This included within-scale and

across-scale letter classification analyses. The significance of

decoding accuracies in each voxel was assessed by a t test

across subjects (see Experimental Procedures).

Left M1 and left aIPS were the two regions with the highest

decoding accuracies across all classification analyses (signifi-

cant within-scale decoding shown in light blue and overlap of

significant within-scale and across-scale decoding shown in

red in Figure 8). These results are consistent with the previous

ROI analysis and demonstrate that accurate letter decoding

was mostly confined to these two motor ROIs. Moreover, the

use of different selection criteria for the ROIs and a different

classification algorithm in the searchlight analysis demonstrate

the robustness of the results and conclusions across multiple

methodological choices.

DISCUSSION

Our results reveal that it is possible to accurately decode both

the identity (Figures 6, 7, 8, and S4) and the scale (Figures 5
and S3) of written letters from their associated fMRI response

patterns in multiple motor system areas. Writing each letter

generated a letter-selective voxel-by-voxel response pattern,

which was similar across small and large scales such that it

was possible to accurately identify an executed letter regardless

of its scale in M1 and aIPS. This scale invariance was robustly

apparent only in M1 and aIPS across classification (Figure 6)

and correlation (Figure 7) analyses in predefined ROIs as well

as when performing an unrestricted searchlight analysis

throughout the entire cortex (Figure 8). Note that subjects did

not receive any visual feedback of their hand throughout the

experiments, thereby eliminating the possibility that analyzed

response patterns were visually evoked.

We interpret these results as strong evidence for the existence

of distributed neural populations in M1 and aIPS that encode let-

ter-writing movements in a scale-invariant manner. We hypothe-

size that these findings are not limited to handwritingmovements

and suggest that efficient motor control is achieved in part

through the use of scale-invariant neural populations in human

M1 and aIPS. The existence of similar scale invariance in M1

and aIPS responses challenges the common description of a

strict motor system hierarchy where M1 is a ‘‘low-level’’ area

that encodes only instantaneous dynamics and kinematics.

Dissociating Letter Scale and Letter Identity
Writing a particular letter at different scales involves generating

different movement dynamics (e.g., activation of proximal versus

distal muscles and joints [Lacquaniti et al., 1987]) and kinematics

(movement speed and duration [Figure 2]) while retaining the let-

ter’s abstract shape/geometry (Figure 3). Comparing letter-spe-

cific response patterns across different scales, therefore, offers

a useful manipulation for dissociating response characteristics

that change with scale from those that are scale invariant.

Writing letters at different scales altered fMRI responses in

two ways. First, all motor ROIs (except for vPM) exhibited signif-

icantly larger mean responses when writing large in comparison

to small letters (Figure S2). This overall amplitude difference
Neuron 81, 452–462, January 22, 2014 ª2014 Elsevier Inc. 455



Figure 4. Activations during Letter Writing

Orange indicates areas that exhibited significantly

larger response amplitudes during letter writing

than rest across all subjects. Results are displayed

on inflated hemispheres (left) as well as on two

horizontal slices (right) of an exemplar subject.

White ellipses outline the general location of

selected ROIs: left primary motor cortex (M1), left

anterior intraparietal sulcus (aIPS), left dorsal

premotor cortex (dPM), left ventral premotor cor-

tex (vPM), supplementary motor area (SMA), left

putamen (PTM), right cerebellum (CRB), and left

insular cortex (INS). Two control ROIs that did

not exhibit activation during movement execution

were also identified: left orbito-frontal cortex

(OFC), and an out-of-brain region (Out of brain). All

ROIs, except for the two control ROIs, were

selected separately in each subject.
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enabled accurate decoding of letter scale on single exemplars

(Figures 5 and S3). Second, larger movements exhibited

different voxel-by-voxel response patterns from small move-

ments. This enabled accurate decoding of letter scale from

de-meaned response patterns of single exemplars (Figure 5).

In fact, it was possible to decode scale across different letters

by training a scale classifier on exemplars of two letters and de-

coding scale on exemplars of the third letter. This suggests that

response patterns differed consistently between all small and

large letters, regardless of letter identity, and presents evidence

for the existence of distributed neural populations that encode

movement scale in a shape-invariant manner. Note that move-

ment scale and mean speed were tightly coupled in the current

experiment (Figure 2), such that scale-specific responses may

equally represent speed-specific responses.

The main purpose of this study, however, was to investigate

scale invariance rather than scale selectivity. More specifically,

we set out to identify particular motor system areas that exhibit

both letter selectivity (i.e., a unique response to each letter)

and scale invariance (i.e., similarly unique responses to each let-

ter across different scales). Writing different letters did not alter

the overall mean response amplitude in motor ROIs. However,

letter selectivity was apparent in the voxel-by-voxel response

patterns of several motor areas, where it was possible to accu-

rately decode the identity of the executed letter on single exem-

plars (Figures 6 and S4). Letter selectivity and scale invariance

was robustly apparent in M1 and aIPS where training a classifier

on large letters enabled accurate decoding of small letters and

vice versa (Figures 6 and 8). Decoding accuracies were similar

before and after removing all scale-specific responses from sin-

gle exemplar response patterns (Figure 6). This suggests that

distributed neural populations in M1 and aIPS encode move-

ment shape in a scale-invariant manner. Furthermore, this sug-

gests that the fMRI response patterns associated with letter

identity and letter scale were dissociable and that independent

neural responses generated the voxel-by-voxel responses asso-

ciated with letter shape and scale.

When discussing letter selectivity we do notmean to imply that

populations of motor neurons are uniquely dedicated to encod-

ing single letters. Instead, M1 and aIPS neural populations may
456 Neuron 81, 452–462, January 22, 2014 ª2014 Elsevier Inc.
encode particular segments or primitives of handwriting move-

ments (Hatsopoulos et al., 2007; Polyakov et al., 2009), possibly

based on directional vectors (Georgopoulos et al., 1982), which

are summed by the sluggish hemodynamic response to present

a unique fMRI response pattern for each letter. Regardless of

how neural populations encode the precise movement seg-

ments that are combined into handwriting movements, the crit-

ical finding is that these segments are encoded independently

of their size/scale.

Whereas shape is probably encoded by shape-selective neu-

ral populations, independent neural encoding of scale/speed

may be achieved in several different ways. Movement scale

could be encoded by gain modulation of the entire population.

In such a scheme, the discharge rate of neurons in M1 and

aIPS would be consistent with a multiplicative process where

neurons show shape/directional tuning but the amplitude of

the tuning curve scales with movement amplitude or speed

(Moran and Schwartz, 1999; Paninski et al., 2004). Alternatively,

movement shape and scale could be encoded by entirely sepa-

rate neural populations (Desmurget et al., 2004) or by sequential

encoding in the same neural populations (Fu et al., 1995). Our

results suggest that larger movements are indeed associated

with an increase in the entire ROI responses (Figure S2), which

is compatible with gain modulation. The observed change

in the voxel-by-voxel response pattern, however, suggests the

recruitment of scale-encoding neural populations that are

entirely separate or partially overlapping with shape-encoding

populations. Our findings could, therefore, be compatible with

a combination of all three proposed implementations.

Kinematics of Handwriting
In agreement with previous studies (Edelman and Flash, 1987;

van Galen and Teulings, 1983; Viviani and Terzuolo, 1982), we

report remarkable geometrical similarity across letters written

on different trials and at different scales (Figure 3). These findings

have often been interpreted as evidence for a hierarchical orga-

nization of motor control where movements are first planned

according to their path/geometry and then translated into pre-

cise kinematics and dynamics (Viviani and Flash, 1995). Scale

invariance is, therefore, a characteristic that would be expected



Table 1. Mean ROI Talairach Coordinates and Size

Talairach Coordinates ROI Size

ROI

Name X Y Z

# Functional

Voxels

L M1 �34.15 (2.39) �26.43 (4.40) 54.93 (1.42) 338.4 (26.4)

L aIPS �32.61 (3.39) �47.80 (3.25) 50.78 (5.96) 346.1 (30.7)

L dPM �24.12 (1.13) �8.48 (1.30) 58.73 (0.93) 265.1 (39.0)

L vPM �47.49 (1.84) 2.29 (3.11) 30.30 (1.39) 264.4 (14.7)

SMA �1.11 (1.47) �7.39 (3.35) 54.99 (2.20) 344.4 (17.6)

L PTM �22.27 (1.40) 0.39 (1.78) 6.48 (1.59) 317.7 (22.5)

R CRB 19.90 (4.02) �48.38 (3.16) �18.51 (2.89) 313.9 (31.0)

L INS �43.85 (2.70) �2.97 (7.89) 9.98 (3.84) 353.7 (20.2)

OFC �14.22 (0) 46.34 (0) 1.80 (0) 317 (0)

Out of

brain

�54.18 (0) 52.06 (0) 56.71 (0) 363 (0)

SD across subjects shown in parentheses.

Anatomical landmarks: M1, hand knob in the left central sulcus; aIPS,

rostral part of the left IPS; dPM, junction of the left precentral sulcus

and superior frontal sulcus; vPM, junction of the left precentral sulcus

and inferior frontal sulcus; SMA, medial walls of the left and right hemi-

spheres, anterior to the precentral gyrus; PTM, left putamen of the basal

ganglia; CRB, anterior lobe of the right cerebellum; INS, left insular cortex;

OFC, left orbitofrontal cortex.

Figure 5. Decoding Accuracies of Letter Scale in M1, aIPS, and
Control ROIs

Bars show classification accuracy results, averaged across letters and sub-

jects. Decoding accuracy was computed for each ROI, separately for each

letter (a, dark blue; s, blue; n, cyan) and across letters (trained on a and s, red; a

and n, orange; s and n, yellow). Classification and decoding was performed

once using the mean ROI amplitudes (top) and again using the de-meaned

voxel-by-voxel response patterns (bottom). Solid line indicates chance level

(50%, two decoding possibilities). Dashed line marks p < 0.001 (randomization

analysis, Bonferroni corrected). Error bars, SEM across subjects. Asterisks:

significant above-chance decoding accuracies (see also Figure S3).
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in the higher levels of such a motor hierarchy. Our results reveal

that scale invariance is similarly evident in aIPS and M1

responses, which are often thought to embody distinct levels

in the motor hierarchy.

Movement Encoding in M1
Theories regarding the function of M1 neural populations have

evolved over the years to suggest that M1 neurons encode

increasingly more elaborate movement features. Early electro-

physiology studies suggested that M1 neurons encode the

amount of force applied by specific muscles (Evarts, 1968),

and later studies suggested that M1 neurons encode end-point

movement kinematics such as direction (Georgopoulos et al.,

1982), speed (Moran and Schwartz, 1999), and amplitude (Fu

et al., 1995). More recent electrophysiology studies have sug-

gested that M1 neurons encode more abstract geometrical

movement segments/primitives (Hatsopoulos et al., 2007;

Hocherman and Wise, 1991; Polyakov et al., 2009) as well as

complex goal-directed actions in nonhuman primates (such as

bringing the hand toward the mouth from different initial posi-

tions) (Graziano et al., 2002a; Overduin et al., 2012). Recent

fMRI studies in humans presented evidence for directional selec-

tivity in M1 in straight reaching movements (Eisenberg et al.,

2010), partially invariant to movement amplitude (Fabbri et al.,

2012). Our results extend these previous studies by demon-

strating that distributed neural populations in human M1 encode

complex handwriting movements in a scale-invariant manner

that is independent of specific dynamics and joint kinematics.

Taken together, these findings are slowly transforming our

appreciation of the substantially more ‘‘high-level’’ role that M1

neural populations play within the motor system hierarchy.

Such high-level motor commands may be translated to specific
muscle synergies by downstream projections, facilitating the

executed movement (Overduin et al., 2012).

Movement Encoding in aIPS
The aIPS and adjacent parietal areas are commonly described

as high-level sensory-motor areas involved in movement plan-

ning (Snyder et al., 1997), sensory-motor integration (Cui and An-

dersen, 2007), and action observation (Rizzolatti and Sinigaglia,

2010). Electrophysiology studies in nonhuman primates focusing

on movement kinematics have reported that single neurons in

anterior intraparietal areas exhibit directional tuning during

hand movements (Kalaska et al., 1983) and that population vec-

tors from small neural ensembles enable decoding of elaborate

movement trajectories (e.g., when drawing geometrical shapes

[Averbeck et al., 2005]). Recent fMRI classification (Gallivan

et al., 2011) and adaptation (Fabbri et al., 2012) studies have

demonstrated that aIPS responses exhibit similar directional

selectivity in humans. Although it may be expected that a high-

level motor area like aIPS would exhibit movement-specific re-

sponses that are invariant to scale, our study provides actual

evidence for this.

With respect to handwriting, several studies have previously

reported that parietal areas respond robustly when subjects

perform handwriting movements (Menon and Desmond, 2001),

regardless of the effector used to execute the movement

(Rijntjes et al., 1999). These studies, however, utilized univariate

analyses to examine the response amplitude of each motor area

and were unable to identify and compare letter-specific re-

sponses, which require assessment of voxel-by-voxel patterns.
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Figure 6. Decoding Accuracies of Letter Identity in M1, aIPS, and

Control ROIs

Decoding accuracy was computed for each ROI, separately for each scale

(large, dark blue; small, cyan) and across scales (trained on large, red; trained

on small, yellow). Classification and decoding was performed once using the

mean ROI amplitudes (top), again using the de-meaned voxel-by-voxel

response patterns (middle), and finally using voxel-by-voxel response patterns

after regressing-out the mean scale patterns (bottom). Solid line indicates

chance level (33%, three decoding possibilities) and dashed line marks p <

0.001 (randomization analysis, Bonferroni corrected). Error bars, SEM across

subjects. Asterisks: significant above-chance decoding accuracies (see also

Figure S4).

Figure 7. Correlation Values between Response Patterns of

Different Size Letters in M1, aIPS, and Control ROIs

Black dots, correlation between same letter identities, across different sizes,

averaged across letters and subjects. Gray triangles, correlation between

different letter identities, across different scales, averaged across letters and

subjects. Dashed lines mark p < 0.001 (randomization analysis, Bonferroni

corrected). Error bars, SEM across subjects. Asterisks: significant above-

chance correlation values (see also Figure S5).
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Our results, therefore, present a considerable advance in

revealing how writing movements are encoded by neural popu-

lations in the aIPS.

Movement Encoding in Other Brain Areas
We focused our discussion on M1 and aIPS because these were

the only two brain areas that exhibited robustly significant scale

invariance across all classification, correlation, and searchlight

analyses. Two other brain areas, however, exhibited significant

or marginally significant responses inmost of the same analyses:

the supplementary motor area (SMA) and insular cortex (INS).

Both the SMA (Fried et al., 1991; Wymbs and Grafton, 2013)

and insular cortex (Fink et al., 1997) are involved in movement

planning andexecution. Althoughprevious studies have reported

that SMA neurons encode movement direction in straight reach-

ing movements (Tankus et al., 2009), encoding of more complex

movements, such as those inherent in handwriting, has not been

thoroughly studied. Here, both areas exhibited above-chance

decoding accuracies for single letters when assessed within

each scale separately (Figure S4). The ability to decode letter

identity across scales, however, was less clear. Although SMA

and insular cortex exhibited above-chance decoding in some
458 Neuron 81, 452–462, January 22, 2014 ª2014 Elsevier Inc.
across-scale classification analyses (Figure S4), neither of these

areas exhibited significant above-chance decoding accuracies

across scales in the searchlight analysis (Figure 8).

Another important motor area, the cerebellum, showed signif-

icantly accurate within-scale but not across-scale letter decod-

ing. This suggests that movement-specific responses were

different across scales, whichwould be expected in caseswhere

movement shape and scale are encoded simultaneously (Fu

et al., 1997). Note, however, that the lack of accurate across-

scale decoding is a null result, which may be due to different rea-

sons and should be interpreted cautiously.

Potential Pitfalls
Classification is an exceptionally useful analysis for assessing

the selectivity of fMRI response patterns, but it suffers from a

worrisome potential pitfall: overfitting. The ability of a classifier

to accurately separate voxel-by-voxel responses into distinct

groups depends on the number of voxels being considered

and the number of exemplars available from each group. In situ-

ations where there are more voxels (features) than exemplars, as

is the case in our ROI analysis (typically �300 voxels and �14

exemplars per condition), the classification algorithm may arbi-

trarily separate the training exemplars into meaningless groups

by overfitting the large number of features. In such a situation

the classification algorithm will generalize poorly to independent

data. To ensure that our results were not prone to classification

overfitting, we validated classification performance by either a

leave-one-out validation procedure (when performing within-

scale decoding) or by validating the classification with entirely

independent data (when performing across-scale decoding).

To ensure that the reported decoding accuracies were not artifi-

cially inflated or biased in anyway, we also performed exactly the

same classification and decoding procedures in two control



Figure 8. Whole-Brain Searchlight Analyses for Letter Identity

Voxels with decoding accuracies that were significantly above chance (>33%)

across subjects are marked on an inflated left hemisphere of one of the sub-

jects. Light blue indicates voxels that showed significant decoding accuracies

for letter identity (p < 0.001) in both within-scale classification analyses

(overlap of large-scale and small-scale decoding); red indicates voxels that

showed significant decoding accuracies for letter identity (p < 0.001) across all

analyses: within and across scale.
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ROIs, which did not respond during movement execution and

were, therefore, not expected to exhibit accurate letter decoding

(Figure 6). Analyses in these ROIs consistently exhibited chance-

level decoding accuracies. In addition, we also performed a

searchlight classification analysis with small ROIs, which con-

tained fewer voxels (27 voxels per ROI) than exemplars (�42

per condition) and were, therefore, less prone to overfitting

problems. This analysis revealed equivalent results (Figure 8).

When considering our findings and conclusions it is important

to note that the precise relationship between fMRI responses

and neural activity is a topic of active research and debate.

Although fMRI responses are strongly correlated with local neu-

ral activity (Mukamel et al., 2005), there are situations where

this relationship may be less consistent (Logothetis, 2008).

Studying encoding principles of motor neural populations by

fMRI is, therefore, subject to the limitations of this neuroimaging

technique.

Implications for Models of Motor Control
We propose that shape-selective and scale-invariant encoding

is a general organizational principle of neural populations in M1

and aIPS,which enables the efficient encoding of the vast human

motor repertoire. The dissociation we observed is in agreement

with previous behavioral studies that presented evidence for an

independent encoding of movement direction and movement

amplitude (Gordon et al., 1994; Messier and Kalaska, 1997).

We assume that the letters used in the current study are faithful

representatives of movements more generally and hypothesize

that scale invariance would be evident inM1 and aIPS responses

during the execution of other well-learned movements. Never-

theless, further studies are necessary to test this assumption.

The results presented here, along with those of several previ-

ous studies (Averbeck et al., 2005; Graziano et al., 2002a;

Hatsopoulos et al., 2007; Kalaska et al., 1983), suggest that

the commonly described hierarchical organization of the motor

system may require modification. The current textbook descrip-
tion of the motor system proposes that abstract motor intentions

encoded by neural populations in high-level brain areas

including premotor and parietal cortices are transformed into

precise moment-by-moment encoding of kinematics and

dynamics in M1. The existence of similar scale-specific and

scale-invariant responses in M1 and aIPS suggest that at least

some neural populations in both of these areas share similar

encoding properties and perform similar motor control computa-

tions, making the hierarchical distinction between these areas

less clear and supporting alternative organizational models of

the motor system, which propose a more distributed network

of movement encoding (e.g., Graziano et al., 2002b).

EXPERIMENTAL PROCEDURES

Subjects

Eleven healthy right-handed subjects (4 males; mean age, 28, SD 3) partici-

pated in one training session, which introduced the task and setup, and one

scanning session. All subjects provided written consent and were paid for their

participation in the study. The IRB committees at Sheba Medical Center and

Weizmann Institute approved the experimental procedures.

Experimental Setup and Design

Subjects lay supine in the scanner bore and viewed a back-projected screen

through an angled mirror, which prevented any visual feedback of their hand.

AnMRI-compatible digitizing tablet (MAGDesign and Engineering) was placed

over the subject’s waist to track their hand movements (Figure 1A). Subjects

wrote three different English lowercase letters (a, s, and n) in two different sizes

(ratio of�1:2). Each trial beganwith anaudio instruction indicating the letter and

scale to be executed. A fixation cross on the screen turned green and subjects

had 4 s to execute the letter. The cross then turned red for 4 s, indicating that

subjects should return their hand to the starting position. Finally, the cross

turned black for a randomized intertrial interval (the rest period) of 4–8 s,

indicating that the subjects should hold their hand still at the starting position

(Figure 1B). Subjectswere trained to perform the task during a separate training

session. The fMRI session included 6 scans, each containing 7 trials of each

letter at each scale (i.e., 42 trials of each condition in total).

Movement Recording and Analysis

Kinematic data were recorded at 100 Hz and smoothed via a fourth-order

Butterworth low pass filter with 5 Hz cut-off. Movement onset and offset

were determined as the time at which velocity exceeded and fell below 10%

of the maximum velocity, respectively. Movement duration, length of path,

reaction time, and mean speed were computed for each trial. Trials containing

erroneous movements (wrong letter or wrong size) or movements with dura-

tion, path length, or reaction time that were three standard deviations below

or above the median of trials were discarded from the analysis. On average,

3.3% (SD 1.1%) of the trials from each subject were discarded.

Similarity of Path Shape

We used the Procrustes transformation to assess letter similarity across trials

and scales (Goodall, 1991). Because trials had different durations and veloc-

ities, we first resampled the hand position data such that each trial contained

500 positions of equal distance. This enabled us to compare movement shape

across trials with normalized velocity and duration. For each subject, we

computed an average movement shape across all trials of each condition by

the Generalized Procrustes Analysis (Wright, 1990) and superimposed single

trials onto the estimated average shape by linearly transforming (translating,

rotating, and scaling) them, such that the sum of squared distances between

each trial and the average shape was minimized. The Procrustes distance was

then computed as:

R2 =
Xn

i = 1

ðyi � xiÞT ðyi � xiÞ;
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where x is the current trial’s transformed shape, y is the average shape, and xi
and yi are the coordinate vectors of the ith point in the two shapes. The Pro-

crustes distance (R2) was normalized such that it equaled a value between

0 and 1, where 0 implied a perfect geometrical match between the single trial

and mean. Similarity across scales was assessed by computing the Procrus-

tes distance between the two average shapes of each letter across scales.

These analyses were completed for each subject separately and then aver-

aged across subjects.

MRI Acquisition and Preprocessing

MRI data were acquired with a Siemens 3T Trio MRI scanner located at the

Weizmann Institute of Science in Rehovot, Israel. Blood oxygenation level-

dependent (BOLD) contrast was obtained with a T2* sensitive echo planar im-

aging (EPI) pulse sequence: repetition time (TR) 2,000 ms, 32 slices, 3*3*4 mm

voxels. High-resolution anatomical volumes were acquired with a T1 weighted

3D-MPRAGE pulse sequence (1*1*1 mm). MRI data were preprocessed with

the Brain Voyager software package (Brain Innovation) and custom software

written in MATLAB (MathWorks). Functional scans were subjected to slice

scan-time correction, 3D motion correction, and temporal high-pass filtering

with a cutoff frequency of two cycles per scan. Functional images were

aligned with the high-resolution anatomical volume by trilinear interpolation.

Anatomical and functional images were then transformed to the Talairach

coordinate system (Talairach and Tournoux, 1988). No additional spatial

smoothing was performed.

Univariate Analysis and ROI Selection

Statistical parameter mapping (SPM) analysis was used to identify brain areas

with significantly larger response amplitudes during letter writing (across all

conditions) than rest. The expected fMRI responses were modeled with a

canonical hemodynamic response function (Boynton et al., 1996) and a linear

regression analysis was used to estimate response amplitudes for each voxel

in each of the movement conditions. Results were combined across subjects

by a random-effects analysis, and a false discovery rate (FDR) of q = 0.01 was

used to address the multiple comparisons problem (Genovese et al., 2002).

Eight motor system regions of interest (ROIs) were defined for each subject

separately. We used an automated MATLAB script to identify adjacent voxels

exhibiting the strongest activation across all movements within a radius of

�12 mm around particular anatomical landmarks (see Figure 4 and Table 1)

(using smaller ROIs of�100 functional voxels gave similar results in the subse-

quent classification analyses). Two control ROIs that did not exhibit any motor

activation in any of the subjects were defined as well. The first included voxels

located in the orbito-frontal cortex (OFC) and the second included voxels

outside the brain (Out of brain).

Estimating fMRI Response Patterns

The response of each voxel in each ROI was estimated for each trial by aver-

aging the BOLD percent signal change at time points 3, 4, and 5 (6, 8, and 10 s)

after movement onset. These time points corresponded to the peak of the

movement-evoked hemodynamic response in all motor ROIs (Figure S2).

The resulting spatial response pattern of each trial can be described mathe-

matically as a multidimensional vector containing the response amplitudes

of the ROI voxels. We used these vectors, as well as the mean ROI amplitudes

(across all voxels), for the subsequent classification and correlation analyses.

Classification of Scale by Mean Responses

The mean ROI amplitude for each trial was computed by averaging the re-

sponses of all the voxels in the ROI. We then averaged random groups of three

trials from the same letter and scale to improve the signal-to-noise ratio of the

exemplars used for classification. This decreased the number of exemplars

we had for each condition from �42 to �14, but also decreased the amount

of noise inherent in each exemplar. A binary SVM linear classifier (Matlab

R2011b, Bioinformatics Toolbox) was then trained to separate the responses

of large and small letters and a discrimination function was computed sepa-

rately for each letter (within-letter scale decoding). The classifier was trained

on all but one large and one small exemplar and classification accuracy was

then tested by decoding the left-out exemplars. Training and testing was

repeated for each available exemplar to compute a decoding accuracy, which
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represented the proportion of left-out exemplars that were accurately decoded

as small or large. This procedure was performed 100 times, while averaging the

trials in different random groups of 3 and the resulting decoding accuracies

were averaged. Because there were two possible decoding options (small or

large), chance-level decoding accuracy was 0.5.

We also performed an equivalent analysis across letters (across-letter scale

decoding) where we trained the classifier to discriminate between large and

small exemplars of two letters and tested the classifier’s ability to decode scale

in exemplars of the third letter. In this case the classifier was trained on all avail-

able exemplars of two letters and decoding accuracy was tested by decoding

all exemplars of the other letter. Chance-level decoding was 0.5 in this analysis

as well.

Decoding accuracies were computed for each ROI and each subject sepa-

rately. We then compared decoding accuracies across the different ROIs to

a statistical significance threshold to determine which ROIs exhibited above-

chance decoding of letter scale.

Classification of Scale by Normalized Voxel-by-Voxel Responses

Identical analyses were performed with the voxel-by-voxel response patterns

of each ROI. Here, instead of training and testing the classifier with a single

value per exemplar (mean ROI amplitude), we used the multidimensional

vector corresponding to the voxel-by-voxel responses of each exemplar.

The vector of each trial was first de-meaned by subtracting the ROI mean

from each voxel. This normalization was performed to ensure that accurate

decoding of scale was due to differences in voxel-by-voxel response patterns

and not to differences in the mean ROI amplitudes. All classification analysis

details were identical to those described above.

Classification of Letter Identity

We performed equivalent classification analyses to those described above to

test whether it was possible to accurately decode the identity of the letter

associated with each exemplar. These analyses were performed first with

mean response amplitudes and then with de-meaned voxel-by-voxel

response patterns. All procedures were identical to those described above

except that here we had three classes (‘‘a,’’ ‘‘s,’’ and ‘‘n’’) and employed a

‘‘one-versus-one’’ approach to solve the multiclass problem (Hsu and Lin,

2002). We trained three binary classifiers to distinguish between pairs of letters

(i.e., a-n, a-s, and s-n). For an exemplar to be decoded accurately (e.g., letter

identity is ‘‘a’’), it had to be successfully decoded by the two relevant binary

classifiers (e.g., both a-n and a-s classifiers). Because there were three decod-

ing outcomes, chance level in these analyses was 0.33.

Classification of letter identity was performed first within each scale by

training and testing the classifiers on exemplars of the same scale and by using

a leave-one-out validation scheme. In a second analysis we also tested decod-

ing accuracies across scales. Here the three binary classifiers were trained on

all exemplars of one scale and then their accuracy was tested by decoding all

exemplars of the other scale.

Regressing out Scale-Specific Response Patterns

A final classification analysis of letter identity was conducted after ‘‘regressing

out’’ all scale-specific information from each trial’s response pattern (see

Haxby et al., 2001). We computed the mean voxel-by-voxel response pattern

of all small trials, performed a regression analysis between this multidimen-

sional vector and the multidimensional vector of each small trial, and retained

the residuals of each small trial for further analyses. This procedure was con-

ducted before randomly averaging trials to exemplars and ensured that there

was no correlation between the mean small response pattern and the trials

used for classification. The same was done for the large-scale trials using

the mean voxel-by-voxel pattern of all large-scale trials. Indeed, attempting

to decode scale from these regressed out exemplars was below chance

level. All classification procedures for decoding letter identity using the scale

regressed out exemplars were identical to those described above.

Statistical Significance of Decoding Accuracies

A randomization analysis was used to assess whether the decoding accuracy

in each ROI was larger than that expected by chance (Stelzer et al., 2013). We

performed identical classification analyses to those described above except
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that here we randomly shuffled movement identities across trials and split

them into artificial groups of equivalent sizes before training and testing the

classifiers on scale or identity. We ran this analysis 100 times for each subject

separately, reshuffling the identity of the trials each time, yielding 100 chance

decoding accuracies for each subject. We next performed a bootstrap anal-

ysis in which we randomly sampled (with replacement) a single chance decod-

ing accuracy from each subject and averaged across all subjects to get amean

chance decoding accuracy across subjects. This procedure was repeated 105

times and yielded a ‘‘null’’ distribution of 105 mean decoding accuracies

across subjects expected by chance in each of the ROIs. A decoding accuracy

was considered significantly higher than chance level if it exceeded the 1/10

percentile (i.e., p value < 0.001).

This analysis was performed separately when assessing decoding

accuracies using the mean ROI responses and the voxel-by-voxel response

patterns. When decoding letter identity by mean ROI amplitudes or voxel-

by-voxel response patterns, all ROIs generated similar null distributions with

a mean of �0.33 and a statistical threshold (p < 0.001, Bonferroni corrected)

of �0.54 and �0.42, respectively. When decoding letter scale by mean ROI

amplitudes or voxel-by-voxel response patterns, all ROIs generated similar

null distributions with a mean of �0.5 and a statistical threshold (p < 0.001,

Bonferroni corrected) of �0.62 and �0.61, respectively.

Pattern Correlation Analysis

Correlation was used to assess the similarity of response patterns across

scales (see Haxby et al., 2001). We computed the mean response pattern

across all trials from each letter (separately for each size) and assessed the

correlation between the small and large mean response patterns. In this anal-

ysis we used the voxel-by-voxel response patterns generated after regressing

out of the scale-specific response patterns as described above. The resulting

correlation coefficients were pooled across same letters (i.e., large a and small

a, large n and small n, and large s and small s) and across different letters (i.e.,

large a and small s, large a and small n, large s and small n, etc.), and averaged

across subjects. Statistical significance was assessed via a randomization test

where the same correlation analysis was performed after randomly shuffling

movement identities (within each scale) across 200 repetitions. This yielded

200 chance correlation coefficients for each subject in each ROI. We next per-

formed an equivalent bootstrap analysis to create a ‘‘null’’ distribution and

assess statistical significance of the actual correlation values. Different ROIs

generated slightly different null distributions with a mean of 0 and a statistical

threshold of �0.1–0.3 (p < 0.001 Bonferroni corrected).

Searchlight Analysis

A ‘‘searchlight’’ analysis (Kriegeskorte et al., 2006) was used to identify cortical

areas with voxel-by-voxel responses that yielded above-chance decoding of

letter identity, without defining a priori regions of interest. In this analysis, clas-

sification was performed with a linear classification algorithm called LDA-

shrinkage (linear discriminant analysis, with a shrinkage estimator for the

covariance matrix) implemented in the SearchMight toolbox for Matlab

(Pereira and Botvinick, 2011). The analysis included selecting ROIs with 26

functional voxels surrounding a central voxel, performing classifier training

and testing steps using the response pattern of this group of voxels, and attrib-

uting a decoding accuracy to the central voxel. In this analysis we did not

regress out the scale-specific response nor did we average groups of trials

into exemplars (i.e., all�42 trials per condition were used). Gray matter masks

were constructed with the Brain Voyager software package and the classifica-

tion was performed separately for each gray matter voxel.

Note that searchlight analyses may result in a false inflation of the regions

marked as informative, because a voxel may be marked as informative

in situations where decoding accuracy was based on responses of neigh-

boring voxels and not the center voxel. However, when using small searchlight

ROIs as done here, this effect is relatively small (Stelzer et al., 2013).

With this method, we generated three decoding accuracy maps for each

subject. The first map described the accuracy of letter decoding when assess-

ing only large trials, the secondmap described the accuracy of letter decoding

when assessing small trials, and the third described the accuracy of letter de-

coding when assessing classification across scales (i.e., when classifying let-

ters of one scale and decoding letters of the other scale). Spatial smoothing
was applied to each subject’s classification accuracy maps, using a low-

pass filter with a Gaussian width of 5 voxels at half height. Statistical signifi-

cance of decoding accuracies for each voxel was computed by a t test across

subjects, testing whether the decoding accuracies were significantly different

from chance (p < 0.001). Voxels with significant decoding accuracies in both

within-scale tests (i.e., above-chance decoding in both large-scale and

small-scale classification analyses) and voxels with significant decoding accu-

racies in both within-scale tests and across-scale test (i.e., above-chance de-

coding in large-scale, small-scale, and across-scale classification analyses)

are presented on an inflated brain of one of the subjects (light blue and red,

respectively, in Figure 8).
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