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Neural Variability Quenching Predicts Individual Perceptual
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Neural activity during repeated presentations of a sensory stimulus exhibits considerable trial-by-trial variability. Previous studies have
reported that trial-by-trial neural variability is reduced (quenched) by the presentation of a stimulus. However, the functional signifi-
cance and behavioral relevance of variability quenching and the potential physiological mechanisms that may drive it have been studied
only rarely. Here, we recorded neural activity with EEG as subjects performed a two-interval forced-choice contrast discrimination task.
Trial-by-trial neural variability was quenched by �40% after the presentation of the stimulus relative to the variability apparent before
stimulus presentation, yet there were large differences in the magnitude of variability quenching across subjects. Individual magnitudes
of quenching predicted individual discrimination capabilities such that subjects who exhibited larger quenching had smaller contrast
discrimination thresholds and steeper psychometric function slopes. Furthermore, the magnitude of variability quenching was strongly
correlated with a reduction in broadband EEG power after stimulus presentation. Our results suggest that neural variability quenching is
achieved by reducing the amplitude of broadband neural oscillations after sensory input, which yields relatively more reproducible
cortical activity across trials and enables superior perceptual abilities in individuals who quench more.
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Introduction
The mammalian brain is a remarkably variable system in which
neural responses to repeated presentations of an identical stimu-
lus exhibit considerable trial-by-trial variability (Arieli et al.,
1996; Shadlen and Newsome, 1998; Carandini, 2004; Churchland
et al., 2010; Goris et al., 2014). Neural variability can be separated

into two distinct components: stimulus-evoked neural variabil-
ity, which represents trial-by-trial variability in the amplitude
and/or timing of the stimulus-evoked response, and ongoing
neural variability, which represents spontaneous moment-by-
moment fluctuations of neural activity. Previous electrophys-
iology studies have reported that stimulus-evoked variability
(apparent after stimulus onset) is considerably smaller than on-
going neural variability (apparent before stimulus presentation)
when measured with intracellular or extracellular recordings and
regardless of whether the animal is performing a task, passively
awake, or anesthetized (Monier et al., 2003; Finn et al., 2007;
Mitchell et al., 2007; Churchland et al., 2010, 2011; Hussar and
Pasternak, 2010; Ledberg et al., 2012; Qi and Constantinidis,
2012). Similar reductions in trial-by-trial neural variability
after stimulus presentation have also been reported with elec-
trocorticography (ECOG), fMRI, and magnetoencephalo-
gram (MEG) recordings in humans (He and Zempel, 2013;
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Significance Statement

Variability quenching is a phenomenon in which neural variability across trials is reduced by the presentation of a stimulus.
Although this phenomenon has been reported across a variety of animal and human studies, its functional significance and
behavioral relevance have been examined only rarely. Here, we report novel empirical evidence from humans revealing that
variability quenching differs dramatically across individual subjects and explains to a certain degree why some individuals exhibit
better perceptual abilities than others. In addition, we found a strong relationship between variability quenching and suppression
of broadband neural oscillations. Together, our results reveal the importance of reproducible cortical activity for enabling better
perceptual abilities and suggest a potential underlying mechanism that may explain why variability quenching occurs.
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He, 2013; Schurger et al., 2015). These studies reveal a general
phenomenon, which is apparent at both the single-cell and
neural network level, whereby stimulus-evoked responses
quench ongoing neural variability.

What is the functional significance and behavioral relevance
of neural variability quenching? A common assumption is that
larger trial-by-trial neural variability should be detrimental for
perceptual and cognitive performance (Dinstein et al., 2015; but
also see Garrett et al., 2013b). An intuitive explanation for this
can be found in signal detection theory (Green and Swets, 1966),
which suggests that internal noise is detrimental for the sensitiv-
ity of a detection system. Previous studies have estimated internal
noise levels in different sensory domains using behavioral tech-
niques such as the equivalent noise model (Pelli and Farell, 1999),
the double-pass method (Burgess and Colborne, 1988; Neri,
2010), or by examining the slope of the psychometric function
(shallower slopes are thought to indicate a “noisier” system; Buss
et al., 2009; Jones et al., 2014). Such studies have reported that
individuals with higher levels of internal noise exhibit higher
discrimination thresholds (Legge et al., 1987; Pardhan, 2004) and
have inferred that internal noise limits the perceptual abilities of
an individual. But behavioral studies cannot quantify ongoing
neural variability and differentiate it from stimulus evoked neu-
ral variability. Therefore, these studies cannot determine which
form of neural variability/noise (absolute neural variability be-
fore/after stimulus presentation or the extent of variability
quenching) is relevant for perceptual performance.

Neural variability across trials is a direct neurophysiological
measure of internal noise. In agreement with the behavioral stud-
ies described above, several neuroimaging studies have reported
that variability is lower across trials in which a threshold-level
visual stimulus is consciously perceived/detected (Schurger et al.,
2010, 2015), as well as across trials in which a stimulus is later
remembered (Xue et al., 2010). Although these seminal studies
have provided critical evidence demonstrating that neural vari-
ability is indeed detrimental for accurate perception and memory
in humans, only one of them (Schurger et al., 2015) differentiated
between ongoing and stimulus evoked neural variability and
quantified variability quenching. This point is particularly im-
portant given that others in the field have suggested that temporal
variability (i.e., fluctuations over time, as measured by the vari-
ability of fMRI time courses) is beneficial for cognitive perfor-
mance (Garrett et al., 2011, 2014). Elucidating the behavioral
relevance of distinct types of neural variability and revealing their
potential neurophysiological sources is therefore of great interest.

To address these questions, we quantified trial-by-trial neural
variability in individual subjects using EEG while participants
performed a contrast discrimination task. We examined neural
variability before and after stimulus presentation and quantified
the extent to which neural variability was quenched in each indi-
vidual. Using spectral analyses, we also investigated whether neu-
ral variability quenching was associated with decreased EEG
power or increased phase coherence across trials, two measures
that represent alternative mechanisms that govern trial-by-trial
variability. This enabled us to determine which forms of neural
variability explained individual perceptual abilities and gain
insight into their potential underlying neurophysiological
mechanisms.

Materials and Methods
Subjects
Twenty-two subjects (7 males, mean age 25 � 2.7 SD) participated in the
study. All subjects had normal or corrected-to-normal vision. The study

was approved by the Ben-Gurion University Internal Review Board. Sub-
jects provided written informed consent and were either paid for their
participation ($12 US per hour) or received research credit as part of the
Psychology Department undergraduate program.

Stimuli and experimental design
The experiment was performed in a dark and sound proof room. The
stimuli were presented using MATLAB (The MathWorks) and Psych-
toolbox (Brainard, 1997). The stimulus consisted of a circular checker-
board with a diameter of 3.7° visual angle located at the center of the
screen. Stimuli were presented using a CRT monitor with a 60 Hz refresh
rate and a resolution of 1280 � 1024 pixels.

A two-interval-forced-choice (2IFC) procedure was used to measure
trial-by-trial neural variability and estimate contrast discrimination
thresholds simultaneously (Fig. 1A). Each trial consisted of two stimuli
that were presented sequentially: one interval contained a stimulus at
100% contrast (i.e., base contrast, Cb) and the other interval contained a
stimulus at 100% contrast minus a varying target contrast (Ct), such that
the final contrast was Cb � Ct. The order of stimuli was randomized.
Each stimulus was presented for 100 ms, followed by a 900 ms blank
screen. Subjects were then presented with a white fixation cross at the
center of the screen until they reported which of the stimuli had higher
contrast. Auditory feedback (1000 Hz; stimulus duration 50 ms; stimulus
intensity 60 db) was given only after a correct response. The fixation cross
remained on the screen for an additional 900 ms (intertrial interval) and
then the subsequent trial began.

We chose this 2IFC rather than a two-alternative force choice (2AFC)
task because its structure enabled us to easily extract the neural responses
to trials containing the base stimulus (100% contrast), which was pre-
sented on every trial in either the first or second stimulus interval. We
replicated our results across the two intervals to demonstrate that the
results were not specifically associated with short-term memory require-
ments that are likely to exist in the first interval of the 2IFC task. Note that
a 2AFC task would not work as well here because we would have to
randomize the location of the low-contrast stimulus (right or left) across
trials and present it together with a second stimulus of varying contrast.
This would dramatically reduce the number of trials available for the
variability analysis that was performed only across trials containing an
identical stimulus.

Individual discrimination thresholds were initially estimated using a
two-down, one-up staircase procedure to estimate the contrast discrim-
ination threshold of each subject at a level of 70.7% correctness (Levitt,
1970). The initial target contrast was Ct � 80% (i.e., stimulus contrast �
20%). The target contrast was divided by 2 or √2 after two correct re-
sponses and multiplied by 2 or √2 after one incorrect response (√2 was
used after the third reversal; Hawkey et al., 2004). The procedure was
terminated after 12 reversal (mean number of trials: 79 � 9 SD) and the
geometric mean of the last 8 reversal values was used as the threshold
estimation.

Next, we estimated the psychometric function for each individual us-
ing the same 2IFC task with two target contrasts above and two below the
previously estimated threshold. Subjects completed four blocks contain-
ing 100 trials each, 20 trials per contrast level presented in a random order
for a total of 80 trials per contrast level. To ensure that the chosen contrast
levels covered the entire range of the psychometric function, a function
was estimated after the first block of trials and the range was adjusted
appropriately. The final psychometric function, discrimination thresh-
old, and slope were estimated as described below.

EEG and eye tracking recordings
EEG data were recorded using a 64-channel Bio-Semi system. Data were
referenced to the mastoid electrodes. Electrooculography was recorded
using two electrodes at the outer canthi of the left and right eyes and one
electrode placed below the right eye. In addition, the position of the right
eye was recorded simultaneously with an eye tracker at 1000 Hz (EyeLink
1000; SR Research).

EEG preprocessing
Data were analyzed using MATLAB and the EEGLAB toolbox (Delorme
and Makeig, 2004). Continuous EEG data were down-sampled to 512 Hz
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and filtered using a 1– 40 Hz band-pass filter. EEG epochs were extracted
using a time window of 700 ms (200 ms prestimulus to 500 ms poststimu-
lus). Only base trials containing a stimulus contrast of 100% were exam-
ined in the neural variability analyses and baseline correction was not
performed so as not to alter trial-by-trial variability in the prestimulus
interval.

Trials in which the absolute amplitude exceeded 70 �V or the power
exceeded 25 db in the 20 – 40 Hz frequency range were identified as
containing eye blinks or muscle artifacts, respectively, and were removed

from further analysis. Identification of eye
blinks was confirmed by eye tracking. Trials
containing horizontal or vertical eye move-
ments that exceeded 1.5 SDs of the mean were
identified and excluded from all analyses.
Mean number of base trials per subject after
rejection was 159 � 28 SD trials.

The cleaned and segmented EEG data were
decomposed into independent components
(IC) using the runica function as implemented
in EEGLAB. Components representing eye
movements or muscle contractions were ex-
cluded by visual inspection. We computed the
percentage variance explained by each of the
remaining components within a time window
of 50 –300 ms after the stimulus, correspond-
ing to the typical duration of a visually evoked
response. We then chose the ICs that ac-
counted for at least 75% of the variance within
this time window and thereby maximally cap-
tured the neural responses associated with vi-
sual processing in each subject (Makeig et al.,
1997). Further analyses were performed twice,
first with the cleaned EEG data and again using
the selected ICs. This enabled us to determine
whether conclusions regarding neural variabil-
ity measures were equally evident when ex-
tracting all ICs that were not related to visual
system responses (i.e., potentially containing
non-neural sources of variability such as anec-
dotal head movements or multiple forms of
measurement noise).

EEG data analysis
Time domain analysis. Trial-by-trial variability
was computed for each time point in the ex-
tracted epochs (�200 to 500 ms) for each of the
64 electrodes in each subject separately. Base
trials from the first and second stimulus inter-
vals were analyzed separately. Absolute trial-
by-trial variability in the prestimulus (Varpre)
and poststimulus (Varpost) stimulus intervals
was computed as the mean variance in �200 to
0 ms and 150 to 400 ms time windows, respec-
tively. Relative trial-by-trial variability (i.e.,
quenching level) was estimated for each subject
using three alternative measures: (1) by com-
puting the mean variability in the poststimulus
interval in percentage change units as follows:

relative variance � �Varpost

Varpre
� 1� � 100; (2)

by computing the absolute difference be-
tween prestimulus variability and poststimu-
lus variability as follows: relative variance �
Varpre � Varpost; and (3) by computing the
ratio between prestimulus variability and
poststimulus variability as follows: relative

variance �
Varpre

Varpost
(see Fig. 5). We focused

our analyses on the six electrodes (P6, P8,
PO8, P5, P7, and PO7) that exhibited the

strongest visual P100 responses (Fig. 2). We identified the amplitude
of the P100 response for each subject and in each electrode separately
and then averaged across subjects.

Mean EEG activity. We quantified mean EEG activity across the six
occipital electrodes during the same time period that contained stable
variability quenching (i.e., 150 – 400 ms after stimulus presentation).
We calculated the mean event-related potential (ERP) across trials in
each electrode separately, computed the area under the rectified

Figure 1. Experimental design and EEG responses. A,2IFC contrast discrimination task included the presentation of two con-
secutive stimuli. Each stimulus was presented for 100 ms and was followed by a 900 ms blank screen. Subjects were instructed to
press a button to report which stimulus was of higher contrast when the fixation cross appeared. One of the two stimuli was always
at base contrast (100%) and the other was of lower contrast. B, EEG recordings from single trials containing the base stimulus.
Colored lines represent single trials and the black line represents the mean ERP. This example presents trials from the first stimulus
interval of a single subject (electrode PO8).

Figure 2. Visual system responses. Topographic maps (mean across subjects) of the P100 response in the first (left) and second
(right) stimulus intervals. We selected the electrodes marked in black (P6, P8, PO8, P5, P7, and PO7) for further analyses.
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curve (integral), and then computed the mean across the six
electrodes.

Time–frequency analysis. Each trial/epoch was transformed to the
time–frequency domain using a sliding window fast Fourier transform
analysis. The Fourier coefficients were estimated in windows of 64 sam-
ples (corresponding to 125 ms) that were shifted by 4 samples (8 ms)
along the time domain. The power of each time–frequency point was
obtained by computing the square root of sum of squares of the Fourier
coefficients. Mean power across trials was calculated for the theta- (4 –7
Hz), alpha- (8 –13 Hz), beta- (14 –20 Hz), and low-gamma (25– 40 Hz)-
frequency bands and then normalized to percentage change units with
respect to the prestimulus interval (�200 to 0 ms): relative power �

�Powerpost

Powerpre
� 1� � 100. Intertrial phase coherence (ITPC), a measure of

the degree to which the phase of each frequency is aligned across trials,

was also calculated for each of the frequency bands (Delorme and
Makeig, 2004). Responses with similar timing/latencies across trials are
expected to have stronger phase coherence than responses with variable
timing.

Psychometric function estimation
We fitted a psychometric function to the behavioral data of each subject
using a maximum likelihood method as implemented in Palameds tool-
box (Prins and Kingdom, 2009) and then used the following logistic
function:

F� x; �, �� �
1

1 � exp����x � ���

where � is the threshold, � is the slope and x is the contrast difference
between the two intervals, Cb � Ct. The lapse rate was set to 0.01 and

Figure 3. Neural variability quenching predicts perceptual performance. Neural variability quenching was estimated in the first (left) and second (right) stimulus intervals. A, Topographic maps
(mean across subjects) representing the level of variability quenching 150 – 400 ms after stimulus presentation. B, Time courses of trial-by-trial variability in percentage change units demonstrating
the decrease in neural variability after stimulus presentation (mean across electrodes noted in A and across subjects). Because neural variability decreased and remained stable between 150 and 400
ms after stimulus presentation (marked in gray), we estimated the level of variability quenching for each subject as the mean across this time window. C, Correlations between relative neural
variability (quenching) and psychometric function slope (left) or contrast discrimination thresholds (right). Each dot represents a single subject. Asterisks indicate significant correlations as assessed
by a randomization test ( p 	 0.05).
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guess rate to 0.5 (i.e., at chance level). The discrimination threshold (80%
correct level) and psychometric function slope were extracted for each
subject separately.

We used the “deviance” measure to estimate the goodness-of-fit of the
psychometric functions in each subject (Wichmann and Hill, 2001). De-
viance is the ratio between the log likelihood function of a saturated
model, in which the number of parameters equals the number of data
points and the psychometric function containing two free parameters.
Deviance values can range from zero to infinity with very low deviance
values indicating that the psychometric function is close to a perfect fit

with the data (i.e., likely to be an overfit) and
very large values of deviance indicating that
there are large errors/residuals when fitting the
model to the data. One way of quantifying the
goodness-of-fit of each subject is to determine
whether the fit of each subject falls between the
5 th and 95 th percentile of a parametric boot-
strapped distribution generated by randomly
sampling 5000 datasets using the psychometric
function that was fit to the data as a generating
function. For the true fit to be considered
“good,” its deviance had to be between the 5 th

and 95 th percentile of this distribution of devi-
ances (Wichmann and Hill, 2001).

Statistical tests
We examined the relationship between neural
(EEG) and perceptual measures across subjects
using Pearson’s and Spearman’s correlations.
The statistical significance of the correlation
coefficients was assessed with a permutation/
randomization test in which we shuffled the
labels of the subjects before computing the cor-
relation coefficient. This procedure was per-
formed 10,000 times while shuffling the labels
across subjects randomly each time to generate
a null distribution for each pair of EEG and
perceptual measures (e.g., prestimulus neural
variability and discrimination threshold). For
the true correlation coefficient to be consid-
ered significant, it had to be higher than the
95 th percentile or lower than the 5 th percentile
of this null distribution (i.e., equivalent to a
p-value of 0.05 in a one tailed t test).

An important feature of our study was that
we were able to reproduce our results across neural responses in the first
and second stimulus intervals. In other words, the relationship between
variability quenching and perceptual performance was reproduced in
two independent assessments. To quantify the statistical significance of
this reproducibility, we computed the Bayes factor, which quantifies the
evidence for the null hypothesis compared with an alternative hypothesis
given a prior. Conventionally, a Bayes factor that is 
3 offers strong
support for the alternative hypothesis and one lower than 1/3 provides
strong support for the null hypothesis (Dienes, 2014). To quantify the
reproducibility of the correlation between the psychometric function
slope/threshold and variability quenching, we tested whether there was
evidence of a relationship in the second stimulus interval given the cor-
relation values found in the first stimulus interval (i.e., the prior; Wagen-
makers et al., 2016).

Gaze variability
Relative gaze position was measured for each time point as the distance
from the fixation cross. We then calculated the SD in gaze position across
trials for each time point and computed the mean across time points in
the poststimulus interval (0 to 500 ms). Individuals who move their eyes
more exhibit larger trial-by-trial SD in gaze position than individuals
who move their eyes less. Therefore, we used this measure to determine
whether gaze variability could explain individual neural variability mea-
sures (see Fig. 11A). Two participants were excluded from this analysis
due to difficulties in the calibration process of the eye tracker.

Electrode offset variability
The quality of EEG recordings was estimated by computing electrode
offset variability across trials. The mean offset value was first computed
for each trial, the variability across trials was computed for each of the
four electrodes, and finally the variability was averaged across electrodes
(see Fig. 11B). When using active electrode, there is no measure of im-
pedance, and fluctuations in electrode offset are the best indication of the
quality of electrode recording (Kappenman and Luck, 2010).

Figure 4. Neural variability quenching predicts perceptual performance also when examining the EEG data after extracting the
visual ICA components (see Materials and Methods). Correlations between variability quenching as estimated in the first (A, B) and
second (C, D) stimulus intervals and psychometric function measures (slope and threshold). Each dot represents a single subject.
Asterisks indicate significant correlations assessed by a randomization test ( p 	 0.05).

Figure 5. Alternative measures of variability quenching explain individual perceptual per-
formance in a similar manner demonstrating the robustness of this relationship. Correlation
coefficients between individual magnitudes of variability quenching and perceptual perfor-
mance estimates (slope and threshold) when using absolute difference between neural vari-
ability in the pre (�200 to 0 ms) and post (150 – 400 ms) stimulus intervals (A) and the ratio
between neural variability in the prestimulus (�200 to 0 ms) and poststimulus (150 – 400 ms)
intervals (B). Asterisks indicate significant correlations assessed by a randomization test ( p 	
0.05).
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Results
Individual subjects exhibited typical ERP responses to the presenta-
tion of the high-contrast checkerboard stimulus (base trials with
100% contrast), which included positive and negative peaks at 100
and 170 ms after stimulus presentation, respectively (Fig. 1B). Note
that the responses varied considerably across trials and there was a
clear decrease in variability �150 ms after stimulus presentation.
Because we wanted to focus on visual system responses, we selected
the six electrodes with the strongest P100 responses (P6, P8, PO8, P5,
P7, and PO7) for further analyses (Fig. 2).

Neural variability and measurement noise
When estimating trial-by-trial neural variability in single sub-
jects, it is important to ensure that estimates are not biased by

measurement noise that may differ across subjects. Therefore,
we used automated software to identify and exclude all trials
containing eye blinks, muscle contractions, and saccades (see
Materials and Methods). In addition, we performed an IC
analysis (ICA) and selected the components that explained
75% of the variance in the stimulus evoked response period
(50 –300 ms after stimulus onset). In this manner, we ex-
tracted the spatiotemporal components of the data that best
captured visual system responses in each subject while remov-
ing all other components, which may have contained variabil-
ity due to non-neural sources (Makeig et al., 1997). All of the
analyses described below were performed once with the orig-
inal cleaned EEG recordings and again after selection of the
relevant ICA components in each subject.

Figure 6. Absolute neural variability in the prestimulus interval, but not the poststimulus interval, predicts perceptual performance. A, Time courses of absolute trial-by-trial variability
in the first (left) and second (right) stimulus intervals. B, Correlations between perceptual measures (slope and threshold) and prestimulus variability. C, Correlations between perceptual
measures (slope and threshold) and poststimulus variability. Each dot represents a single subject. Asterisks indicate significant correlations as assessed by a randomization analysis
( p 	 0.05).
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Figure 7. Spectral power and ITPC dynamics (mean across all subjects). A, Time–frequency spectrograms of the spectral power (left) and ITPC (right) demonstrating the change in power and
phase coherence as a function of time, with color representing the amplitude of change relative to the prestimulus interval (�200 to 0 ms) in percentage change units. B, Time courses of four
frequency bands: theta (4 –7 Hz; black lines), alpha (8 –13 Hz; light gray lines), beta (14 –20 Hz; light gray dotted lines), and low-gamma (25– 40 Hz; dark gray dotted line). Area marked in gray
(150 – 400 ms) corresponds to time window with sustained neural variability quenching in Figure 3.

Figure 8. Variability quenching is related to decreased power but not to increased ITPC. A, Scatter plots demonstrating the relationship between neural variability quenching and spectral power.
B, Scatter plots demonstrating the relationship between neural variability quenching and ITPC. Correlations were assessed for four frequency bands: theta (4 –7 Hz), alpha (8 –13 Hz), beta (14 –20
Hz), and low-gamma (25– 40 Hz). Each dot represents single subjects. Asterisks indicate significant correlations as assessed by a randomization analysis ( p 	 0.05).
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Neural variability quenching
In agreement with previous studies, our subjects exhibited a
strong and sustained decrease in variability across trials 150 – 400
ms after stimulus presentation. This finding was robust in both
the first and second stimulus intervals (Fig. 3B) and strongest in
occipital electrodes (Fig. 3A).

Individual variability quenching magnitudes predicted per-
ceptual abilities (Fig. 3C). Significant negative correlations were
apparent between the slope of the psychometric function and the
magnitude of neural variability quenching, as estimated in either
the first or second stimulus intervals (Pearson’s: r(22) 	 �0.46,
p 	 0.05; Spearman’s: r(22) 	 �0.44, p 	 0.05; randomization
analysis). Significant positive correlations were revealed between
individual discrimination thresholds and the level of neural vari-
ability quenching as estimated in the first stimulus interval (Pear-
son’s: r(22) � 0.34, p 	 0.05; Spearman’s: r(22) � 0.33, p 	 0.05)
and in the second stimulus interval, when we used the Spear-
man’s correlation coefficient (r(22) � 0.4, p 	 0.05). Strong trend
in the same direction was also apparent when we used Pearson’s
correlation coefficient (r(22) � 0.32, p � 0.07).

We computed the Bayes factor to quantify the reproducibility
of the correlation analyses between the perceptual measures and
the magnitude of variability quenching across the two stimulus
intervals. We found strong evidence for this relationship/corre-
lation when testing the correlation coefficient found in the sec-
ond stimulus interval, given the correlation coefficient in the first
stimulus interval as a prior (Bayes factor for the correlation with
the threshold was 3.9 and for the correlation with the slope was
6.2). Equivalent findings were also found when examining the
visual ICA components (Fig. 4) and two alternative quenching
measures (Fig. 5), thereby demonstrating the robustness of these
results across multiple manners of analysis.

The relationship between individual variability quenching
and discrimination performance was specific to the examined
electrodes. Performing the same analysis with frontal electrodes
(FP1, FP2 and FPZ) revealed low correlation with discrimination
threshold (first stimulus interval: r(22) � 0.27, second stimulus
interval: r(22) � 0.09; p 
 0.11) and with the slope of the

psychometric function (first stimulus interval: r(22) � �0.32, p �
0.7; second stimulus interval: r(22) � �0.25, p � 0.13).

Pre and post stimulus neural variability
Neural variability quenching represents a relative difference be-
tween the neural variability apparent before and after stimulus
presentation. We also examined the relationship between percep-
tual performance and the absolute pre and post stimulus neural
variability levels of individual subjects. Significant positive corre-
lations were found between the psychometric function slope and
absolute neural variability in the prestimulus interval (�200 to 0
ms) as quantified in either the first or second stimulus intervals
using the Pearson’s correlation coefficient (first interval r(22) �
0.42, second interval r(22) � 0.51, p 	 0.05) but not when using
the Spearman correlation coefficient (first interval r(22) � 0.25,
second interval r(22) � 0.23, p 	 0.12; Fig. 6B). Weak, nonsignif-
icant negative correlations were found between discrimination
thresholds and neural variability in the prestimulus period (Pear-
son’s: first interval r(22) � �0.15, second interval r(22) � �0.22,
p 
 0.16; Spearman’s: first interval r(22) � �0.1, second interval
r(22) � �0.04, p 
 0.33). There were no significant correlations
between either psychometric function slopes (Pearson’s: first in-
terval r(22) � 0.17, second interval r(22) � 0.22, p 
 0.15; Spear-
man’s: first interval r(22) � 0.06, second interval r(22) � 0.1 p 

0.32) or discrimination thresholds (Pearson’s: first interval r(22)

� 0, second interval r(22) � �0.01, p 
 0.48; Spearman’s: first
and second intervals r(22) � 0.1, p � 0.3) and neural variability in
the poststimulus interval (Fig. 6C).

Variability in the amplitude and the latency of the
neural responses
Stimulus-evoked neural variability can be driven by variability in
the amplitude and/or the latency of responses across trials. One
way of separating these two components is by performing a spec-
tral decomposition analysis and examining the power and phase
variability across trials within specific frequency bands. Below are
results from the first stimulus interval and equivalent results were
found in the second stimulus interval.

We first examined the mean power dynamics after stimulus
presentation in four frequency bands: theta (4 –7 Hz), alpha
(8 –13 Hz), beta (14 –20 Hz), and low-gamma (25– 40 Hz). This
analysis revealed a typical initial broadband increase in power 100
ms after stimulus onset, which transitioned into a decrease in
power �150 ms after stimulus onset (Fig. 7). ITPC analysis re-
vealed an increase in phase coherence (i.e., phase alignment
across trials) 100 ms after stimulus onset, which lasted until �300
ms after stimulus onset.

Variability quenching is associated with decreased power
rather than increased ITPC
Neural variability quenching may happen because of a decrease
in power (i.e., less amplitude variability across trials) and/or an
increase in phase coherence (i.e., less temporal variability across
trials). Therefore, we examined the relationships across these
measures in the 150 – 400 ms poststimulus time window when
neural variability quenching was maximal (Fig. 3). Significant
positive correlations were found between the magnitude of vari-
ability quenching and the power of theta-, alpha-, beta-, and
low-gamma-frequency bands (Pearson’s: r(22) 
 0.66, p 	 0.001,
Spearman’s: r(22) 
 0.65, p 	 0.001), indicating that individuals
who exhibited larger variability quenching also exhibited weaker
power in all four frequency bands. The relationship between vari-
ability quenching and ITPC was not significant for the alpha-,

Figure 9. Better perceptual performance is associated with decreased power rather than
increased ITPC. Pearson’s correlation coefficients describing the relationships between psycho-
metric function slope (left) or discrimination threshold (right) and spectral power or ITPC as
estimated in four frequency bands: theta (black), alpha (light gray) beta (gray), and low-
gamma (dark gray). Asterisks indicate significant correlations as assessed by a randomization
analysis ( p 	 0.05).
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beta-, and low-gamma-frequency bands (Pearson’s: r(22) 	 0.16,
p 
 0.24; Spearman’s: r(22) 	 0.15, p 
 0.25), yet there was a
significant correlation in the theta band when we used the Spear-
man’s correlation coefficient (Pearson’s: r(22) � 0.28, p � 0.1;
Spearman’s: r(22) � 0.42, p 	 0.05). Together, these results sug-
gest that individuals who quench more do so because of de-
creased power (i.e., lower amplitude variability across trials)
rather than increased phase coherence (i.e., less temporal vari-
ability; Fig. 8).

Better perception is associated with decreased power rather
than increased ITPC
Finally, we examined the relationship between the perceptual
performance measures and spectral power or ITPC (Fig. 9).
Significant negative correlations were found between the psycho-
metric function slopes and the power in alpha-, beta-, and low-
gamma-frequency bands (Pearson’s: r(22) 	 �0.38, p 	 0.05;
Spearman’s: r(22) 	 �0.39, p 	 0.05) and a similar trend was
found for the theta-frequency band (Pearson’s: r(22) � �0.25,

Figure 10. Mean EEG activity was not associated with perceptual measures. Shown are scatter plots demonstrating the relationship between mean EEG activity and psychometric
function slope (left) or discrimination threshold (right) in the first (A) or second (B) stimulus interval. Each dot represents a single subject and Pearson’s correlation coefficients are noted
in each panel. C, Example demonstrating the calculation of the mean EEG response with the ERP of a single electrode in a single subject. Gray indicates area under the curve 150 – 400 ms
after stimulus presentation.
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p � 0.13; Spearman’s: r(22) � �0.29, p �
0.09). Significant positive correlations
were found between the discrimination
threshold and the power in alpha- and
low-gamma-frequency bands (Pearson’s:
r(22) 
 0.35, p 	 0.05; Spearman’s: r(22)


0.38, p 	 0.05) and similar trends in the
theta- and beta-frequency bands (Pear-
son’s: for theta and beta r(22) � 0.32, p �
0.07; Spearman’s: theta r(22) � 0.3, p �
0.09, beta r(22) � 0.35, p 	 0.05). ITPC
measures were not correlated with either
perceptual measure (Pearson’s: �0.07	
r 	 0.12, p 
 0.28; Spearman’s: �0.09 	
r 	 0.1, p 
 0.31).

Mean EEG activity was not associated
with perceptual abilities
We investigated whether there was a rela-
tionship between the two perceptual mea-
sures and mean EEG activity within the
time window of quenching (i.e., 150 – 400
ms after stimulus). Mean EEG activity was
computed as the integral of the ERP (see
Materials and Methods; Fig. 10C). Mean
EEG activity was not significantly corre-
lated with discrimination threshold nor
with the psychometric function slope
when examining responses from either
the first (Pearson’s: r(22) 	 0.28, p 
 0.1;
Spearman’s: r(22) 	 0.13, p 
 0.27) or sec-
ond (Pearson’s: r(22) 	 0.24, p 
 0.13;
Spearman’s: r(22) 	 0.12, p 
 0.29) stim-
ulus interval (Fig. 10). This demonstrated
that individual variability magnitudes
rather than response amplitudes were sig-
nificantly associated with perceptual per-
formance measures.

Alternative sources of trial-by-
trial variability
To rule out potential confounds in the in-
terpretation of our results, we examined
whether individual differences in the vari-
ability of gaze position or quality of EEG
recordings (as estimated by the variability
of electrode offset across trials) could ex-
plain individual differences in neural vari-
ability measures. Gaze position variability
and electrode offset variability across tri-
als (see Materials and Methods) were not
significantly correlated with magnitudes of variability
quenching when examining either the first or second stimulus
interval (Fig. 11). Finally, we also examined the goodness-of-
fit of individual psychometric functions using the deviance
measure and found that the deviances of all subjects were within an
acceptable confidence range (i.e., between the 5th and 95th percentile
of expected deviances distribution; see Materials and Methods).
Most importantly, individual variability quenching was not signifi-
cantly correlated with individual deviance measures (Fig. 11C). This
means that potential between-subject differences in our ability to fit

the psychometric function (i.e., goodness-of-fit) do not explain our
results.

Discussion
Our results reveal that neural variability quenching differs across
subjects in a manner that explains to a certain degree their indi-
vidual perceptual abilities. Individuals who exhibited larger
quenching had smaller contrast discrimination thresholds and
steeper psychometric function slopes. These results were re-
produced when examining neural responses from the first or

Figure 11. Individual magnitudes of variability quenching were not correlated with different sources of measurement
noise. A, Correlation between variability quenching and gaze variability across trials in the first (left) and second (right)
stimulus intervals. B, Correlation between variability quenching and electrode offset variability across trials in the first
(left) and second (right) stimulus intervals. C, Correlation between variability quenching and the goodness-of-fit of
individual psychometric functions in the first (left) and second (right) stimulus intervals. Each point represents a single
subject. Correlation coefficients are noted in each panel.
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second stimulus intervals, when examining the ICA compo-
nents that best captured the visual responses (Fig. 4), and
when quantifying quenching levels using three alternative
measures (Figs. 3, 5).

Variability quenching measures explained perceptual abilities
much better than absolute neural variability measures. Absolute
neural variability after stimulus presentation was not signifi-
cantly associated with perceptual performance, whereas neural
variability before stimulus presentation was significantly corre-
lated only with psychometric function slopes (Fig. 6). Neverthe-
less, a combination of large prestimulus neural variability and
strong quenching seems to characterize individuals with superior
perceptual performance.

Spectral analyses revealed that quenching intensities were
strongly correlated with poststimulus reductions in the power of
theta-, alpha-, beta- and low-gamma-frequency bands. Individ-
uals who exhibited larger quenching intensities also exhibited
larger reductions in poststimulus power (Fig. 8). In contrast, neu-
ral variability quenching did not correlate with the level of phase
coherence across trials (ITPC). Furthermore, better perceptual
performance was more strongly correlated with power reduc-
tion than with ITPC (Fig. 9). This reveals that larger variability
quenching and better perceptual performance are associated with
a decrease in the amplitude of broadband EEG oscillations after
stimulus presentation rather than an increase in phase locking
(i.e., timing of responses) across trials.

Together, these results suggest that the intensity of neural
variability quenching may govern individual perceptual capa-
bilities and that this phenomenon is generated by reducing the
amplitude of broadband neural oscillations after stimulus pre-
sentation.

Importance of reproducible neural responses across trials
Previous electrophysiology and neuroimaging studies have re-
vealed that trial-by-trial neural variability is reduced after st-
imulus presentation compared with the variability apparent
beforehand. This robust phenomenon appears in responses of
multiple brain areas when measured with intracellular (Monier et
al., 2003; Finn et al., 2007), extracellular (Mitchell et al., 2007;
Churchland et al., 2010; Hussar and Pasternak, 2010), fMRI
(Schurger et al., 2010; Xue et al., 2010; He, 2013), MEG (Schurger
et al., 2015), or ECOG (He and Zempel, 2013) recording tech-
niques. This suggests that large moment-to-moment neural vari-
ability generated by ongoing spontaneous neural fluctuations is
quenched by external neural input into the cortex. In other
words, cortical networks seem to enforce more reproducible ac-
tivity after receiving input about an external stimulus (Church-
land et al., 2010).

Trials with more reproducible neural responses are often as-
sociated with faster and more accurate perception/behavior. For
example, recordings in monkeys trained to attend to specific vi-
sual locations revealed that neural responses in visual system ar-
eas were less variable across trials when the stimulus was in the
attended location (Mitchell et al., 2007; Cohen and Maunsell,
2009). This suggests that the beneficial effects of attention on
behavioral speed and accuracy are associated with a decrease in
neural variability. Furthermore, larger reductions in neural vari-
ability were apparent in trials in which a threshold-level stimulus
was consciously perceived compared with trials where the stim-
ulus was not (Schurger et al., 2010, 2015) and trial-by-trial vari-
ability was lower in trials in which a stimulus was successfully
remembered 6 h later (Xue et al., 2010).

Although these studies present strong evidence in support of
the hypothesis that larger reproducibility enables more accurate
behavioral performance, previous studies did not examine how
absolute and relative measures of neural variability may differ
across individual animals/humans and potentially explain their
individual behavioral capabilities.

Neural variability in the prestimulus interval
Although neural reproducibility seems to be important for per-
ception, individuals with larger trial-by-trial variability in the
prestimulus interval exhibited better perceptual performance
measures as demonstrated by significant correlations with indi-
vidual psychometric function slopes (Fig. 6). This seems surpris-
ing given the findings described above and the common intuition
that larger variability should be detrimental for perception as
outlined by signal detection theory principles (see section below).

With that said, several recent studies have suggested that
larger temporal neural variability (e.g., the magnitude of ongoing
fluctuations apparent in fMRI time courses) may be beneficial for
cognitive performance (Garrett et al., 2013b) following the logic
that variable neural systems may be able to encode a larger dy-
namic range of stimuli and transition across “brain states” with
better efficiency (Deco et al., 2011; Mišić et al., 2011). This view is
based on reports of individuals who exhibit larger fMRI time
course variability and perform cognitive tasks such as perceptual
matching, attentional cueing, and delayed match to sample more
quickly and consistently (Garrett et al., 2013a).

Our results offer a potential way of bridging these conflicting
reports, which have measured neural variability using different
analysis techniques and mostly focused on different types of vari-
ability: variability of stimulus-evoked responses across trials
(Schurger et al., 2010; Xue et al., 2010) and ongoing variability
over time regardless of stimulus/task presentation (Garrett et al.,
2011, 2014). By separating prestimulus and poststimulus vari-
ability and demonstrating that their ratio enables the strongest
prediction of individual perceptual abilities, our results highlight
the importance of relative rather than absolute variability mea-
sures for explaining, at least in part, individual perceptual perfor-
mance levels. This is consistent with a recent MEG study
reporting larger variability quenching across trials in which a
threshold-level stimulus was accurately detected as well as larger
ongoing/baseline variability in healthy adults compared with un-
conscious patients (Schurger et al., 2015).

Signal detection theory
Signal detection theory describes several factors that are com-
monly thought to affect the ability of a system to detect the pres-
ence of a stimulus (Green and Swets, 1966); two basic factors are
the intensity of the stimulus and the amount of internal noise
within the system. When the signal intensity is strong and the
amount of internal noise is low it is easy to detect the presence of
the stimulus. Trial-by-trial neural variability is a measure of the
internal noise of a sensory neural system. According to signal
detection theory, minimizing such variability would enable more
accurate detection of weaker stimuli.

Previous studies have estimated internal noise using behav-
ioral measures including the equivalent noise model (Pelli and
Farell, 1999), the double-pass method (Burgess and Colborne,
1988; Neri, 2010), or by examining the slope of the psychometric
function (Buss et al., 2009; Jones et al., 2014). Such studies have
reported that individuals with lower levels of internal noise ex-
hibit better perceptual performance (Legge et al., 1987; Pardhan,
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2004; Aihara et al., 2008) and have inferred that internal noise
limits the perceptual abilities of an individual.

In the current study, we assessed internal noise in individual
subjects by quantifying EEG trial-by-trial variability. In contrast
to the psychophysics studies described above, our results suggest
that it is the relative (rather than absolute) level of internal noise
(i.e., internal noise quenching) that governs performance differ-
ences across individual subjects.

What drives neural variability quenching?
Two distinct sources of variability can generate trial-by-trial EEG
variability: (1) variability in the amplitude of the responses across
trials and (2) variability in the phase (i.e., timing/latency) of the
responses across trials. We used spectral analyses to disentangle the
contributions of amplitude and phase changes to variability quench-
ing. These analyses revealed that variability quenching was strongly
associated with a decrease in broadband EEG power, but not with an
increase in ITPC (Fig. 8). This suggests that neural variability
quenching may be the outcome of decreased theta-, alpha-, beta-,
and low-gamma-band power that appears 150–200 ms after stimu-
lus presentation. Furthermore, a follow-up analysis revealed that
individuals with weaker power (rather than stronger ITPC) exhib-
ited better perceptual performance (Fig. 9). This suggests that the
better cortical reproducibility after stimulus presentation (Church-
land et al., 2010) is mostly enforced by reducing broadband oscilla-
tory power.

Reduction in alpha/beta-band power that appears after stimulus
presentation is a widely reported phenomenon that has been named
event-related desynchronization (ERD) (Pfurtscheller and Lopes da
Silva, 1999; Klimesch, 2012). ERD responses are spatially selective to
the activated cortical location (Pfurtscheller and Lopes da Silva,
1999; Nikouline et al., 2000), are larger on trials where subjects allo-
cate attention to the stimulus (Foxe and Snyder, 2011), increase with
stimulus amplitude (Stancák et al., 2003), and are larger on trials in
which stimuli are consciously perceived (Babiloni et al., 2006). These
findings support a general claim that lower alpha power (i.e., larger
ERD) reflects a higher level of cortical activation (Pfurtscheller,
2006). To date, the relationship between neural variability quench-
ing and ERD has not been examined and the two measures have
mostly been reported and discussed in separate fields of research.
Our results suggest that there is likely to be an intimate relationship
between the two, which seems to characterize complementary as-
pects (activation level and reproducibility) of stimulus-evoked cor-
tical responses that differ across individuals with different perceptual
abilities.

Dealing with measurement noise
When quantifying differences in trial-by-trial neural variability
across subjects, it is essential to minimize the contribution of non-
neural sources of variability that may also differ across subjects. To
address this concern, we carefully cleaned the data using automated
procedures for identifying and removing trials with eye blinks, mus-
cle contractions, and saccades. In addition, we performed an ICA
analysis and selected the spatiotemporal components that best
captured the visual responses in our experiment, thereby excluding
all ICA components that may have contained variability that was not
necessarily associated with neural activity (Fig. 4). Equivalent find-
ings were apparent when using the ICA analysis. This demonstrates
the robustness of the findings across multiple processing and clean-
ing techniques, ruling out potential contributions of measurement
noise.

Conclusions
Until recently, measures of neural variability within single sub-
jects were mostly ignored by the scientific community and con-
sidered to be meaningless “noise.” Accumulating research is
demonstrating that measures of neural variability are useful for
explaining behavioral variability across trials and differences in
perceptual capabilities across individuals. Important outstanding
questions for future research include that following. Are within-
subject neural variability measures (e.g., variability quenching)
reliable over time and across tasks? To what degree is neural
variability under behavioral control of an individual through
mechanisms of attention and neuromodulation? How can neural
variability be altered to determine causal relationships with be-
havioral measures? Answering these questions and others by ex-
amining absolute and relative variability measures in perceptual/
cognitive tasks across multiple sensory modalities and across dif-
ferent patient populations are likely to reveal rich sources of
information for accurately characterizing individual perceptual
and cognitive abilities and clinical states (Dinstein et al., 2015).
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