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Abstract

Objective: Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), 

and obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders that 

frequently co-occur. We aimed to directly compare all three disorders. The ENIGMA consortium 

is ideally positioned to investigate structural brain differences across these disorders.

Methods: Structural T1-weighted whole-brain MRI of controls (n=5,827) and patients with 

ADHD (n=2,271), ASD (n=1,777), and OCD (n=2,323) from 151 cohorts worldwide were 

analyzed using standardized processing protocols. We examined subcortical volume, cortical 

thickness and surface area differences within a mega-analytical framework, pooling measures 

extracted from each cohort. Analyses were performed separately for children, adolescents, and 

adults using linear mixed-effects models adjusting for age, sex and site (and intra-cranial volume 

(ICV) for subcortical and surface area measures).

Results: We found no shared differences among all three disorders, while shared differences 

between any two disorders did not survive multiple comparisons correction. Children with ADHD 

compared to those with OCD had smaller hippocampal volumes, possibly influenced by IQ. 

Children and adolescents with ADHD also had smaller ICV than controls and those with OCD or 

ASD. Adults with ASD showed thicker frontal cortices compared to adult controls and other 

clinical groups. No OCD-specific differences across different age-groups and surface area 

differences among all disorders in childhood and adulthood were observed.

Conclusion—Our findings suggest robust but subtle differences across different age-groups 

among ADHD, ASD, and OCD. ADHD-specific ICV and hippocampal differences in children and 

adolescents, and ASD-specific cortical thickness differences in the frontal cortex in adults support 

previous work emphasizing structural brain differences in these disorders.
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Introduction

Attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and 

obsessive-compulsive disorder (OCD) are common neurodevelopmental disorders with a 

lifetime prevalence of 2.5–5%, ~1%, and 2.3%, respectively (1–3). Symptoms mostly 

develop early in life (ADHD, ASD) or later in childhood (OCD) and often persist into 

adulthood. Characteristic symptoms include inattentiveness, impulsivity and hyperactivity 

for ADHD; impairments in social communication and restricted and stereotyped behaviors 

for ASD; and repetitive thoughts (obsessions) and behaviors or mental acts (compulsions) 

that cause distress or anxiety for OCD. Although each disorder is distinguished by its own 

core symptoms, the disorders frequently co-occur and share overlap in phenomenology and 

pathophysiology (4,5).

There are parallels between the uncontrollable impulsive behaviors of ADHD and the 

excessive and compulsive rituals of OCD and ASD. Impaired response inhibition and 

cognitive control processes may underlie the cross-disorder traits within the impulsive-

compulsive spectrum (6), implicating cortico-striato-thalamo-cortical and fronto-parietal 

networks (7). It remains unclear which morphological brain abnormalities within these 

networks are shared (non-specific) versus distinct (specific to one disorder).

Imaging studies, including meta-analyses, have generally compared one of the three 

disorders to healthy controls (8–12). Large-scale studies generally yielded small to moderate 

effect sizes, indicating that disorder-associated differences are subtle (13–17). Few structural 

imaging studies have directly compared these three disorders (18,19), mostly in small 

numbers and with inconsistent results (20). A meta-analysis including 931 patients with 

ADHD and 928 with OCD reported shared smaller ventromedial prefrontal cortex gray 

matter volume, ADHD-specific smaller gray matter volume in basal ganglia and insula, and 

OCD-specific smaller volume of rostral and dorsal anterior cingulate and medial prefrontal 

cortex (21). Another meta-analysis comparing structural brain differences in 911 patients 

with ASD and 928 with OCD reported shared differences in the dorsal medial prefrontal 

cortex and OCD-specific differences in the basal ganglia (22). However, despite their 

clinical overlap, no structural gray matter study so far compared all three disorders.

The ENIGMA consortium (23) includes the largest samples for ADHD, ASD, and OCD 

worldwide (13–17). The consortium also improves on earlier meta-analyses by using 

harmonized protocols for brain segmentation and quality control procedures across 

ENIGMA working groups, and by pooling extracted individual participant data. The 

ENIGMA consortium is therefore ideally positioned to investigate overlap and specificity of 

structural brain differences across disorders.

Here, we present the largest comparative study investigating subcortical and cortical 

differences across ADHD, ASD, and OCD. We extracted subcortical volumes, cortical 

thickness, and cortical surface area estimates of 12,198 individuals from 151 cohorts 

worldwide, using harmonized data processing protocols. Based on previous meta- and mega-

analyses, we expected to find ADHD-specific differences in frontal and temporal surface 

areas and basal ganglia volumes in children (14,15), ASD-specific differences in frontal and 
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temporal cortical thickness (13), and OCD-specific differences in the thalamus of pediatric 

patients and the pallidum of adult patients (16). We expected that differences in the striatum 

and dorsomedial prefrontal cortex would be observed across disorders (21,22).

Methods

Samples

The ENIGMA-ADHD working group includes 48 cohorts from 34 research institutes, with 

neuroimaging and clinical data from patients with ADHD and healthy controls. The 

ENIGMA-ASD working group includes 56 cohorts from 38 research institutes, with 

neuroimaging and clinical data from patients with ASD and healthy controls. The ENIGMA-

OCD working group includes 47 cohorts from 34 research institutes, with neuroimaging and 

clinical data from patients with OCD and healthy controls..

All working groups included data from subjects across the lifespan. As prior results 

suggested differential effects between pediatric (<12 years), adolescent (12–18 years), and 

adult (≥18 years) patients, we performed separate mega-analyses for these three age-groups. 

In total, we analyzed data from 2,271 patients with ADHD, 1,777 with ASD, 2,323 with 

OCD, and 5,827 healthy controls. All local institutional review boards permitted the use of 

measures extracted from the coded data for mega-analyses.

Image Acquisition and Processing

Structural T1-weighted whole-brain Magnetic Resonance Spectroscopy (MRI) was acquired 

and processed locally. Image acquisition parameters for each cohort are listed in 

Supplementary Tables S1–S3. All cortical parcellations were performed with the fully 

automated segmentation program FreeSurfer, version 5.3, following standardized ENIGMA 

protocols to harmonize analyses and quality control (QC) procedures across multiple sites 

(http://enigma.ini.usc.edu/protocols/imaging-protocols/). Segmentations of seven bilateral 

subcortical and 34 bilateral cortical regions of interest according to the Desikan-Killiany 

atlas were statistically evaluated for outliers, and subsequenlty visually inspected for 

segmentation success. Individual volumes with poor segmentation were removed, as well as 

subjects with overall poor segmentation quality. All the quality control was performed 

locally on each site, and only data of sufficient quality was send for inclusion in the 

ENIGMA cohorts. All reported group sizes in this manuscript are after QC. Details on 

image exclusion criteria and quality control are presented in Supplementary Information 

SI1. All cohorts of each working group underwent identical processing and quality control 

procedures.

Statistical Analysis

We pooled extracted subcortical volumes, cortical thickness and cortical surface area 

measures from individual subjects across all cohorts from the different working groups into 

one database to perform a mega-analysis. We examined differences among patients groups 

and controls using linear mixed-effects models in STATA; mixed models are used to take 

into account the differences between sites. The means of the left and right hemisphere of 34 

cortical regions (separately for cortical thickness and cortical surface area), whole-
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hemisphere measures (average thickness and total surface area), and seven subcortical 

regions were used in the mega-analyses. To obtain comparable standardized regression 

coefficients (effect sizes) for all comparisons the z-scores for each of the cortical and 

subcortical regions-of-interest served as the outcome measures, and the diagnoses (ADHD, 

ASD, OCD, and HC) were included as separate independent variables of interest, using three 

dummy variables. Disorder specific differences were assessed by alternating the different 

diagnoses as reference category. Shared differences were assessed using the HC as a 

reference category. A random intercept for cohort was entered to account for clustering 

within cohorts; if necessary (i.e. when there was a significant improvement of the model fit), 

a random slope for diagnosis*cohort was included to account for different effect sizes 

between cohorts within the different working groups (24). Age and sex were included as 

covariates (25,26); for the surface area and subcortical volume analyses, ICV was also added 

as a covariate, since these measures scale with head size (27). The standard formula with a 

putative random slope therefore looks as follows: MRI_feature_zscore ~ Dx1 + Dx2 + Dx3 
+ Age + Sex + (Dx*cohort), with Dx1–3 referring to Diagnostic groups.

To detect potentially different effects of disorder with age, we performed all analyses 

separately for pediatric, adolescent, and adult patients. Because only a limited number of 

cohorts had data on IQ and medication use, sensitivity analyses were performed to 

investigate how IQ and psychotropic medication use might have influenced the disorder 

differences. For medication use (yes/no at time of scanning), stratified analyses according to 

medication status were performed. With respect to IQ, we included the variable as an 

additional covariate in the analyses. The Benjamini-Hochberg false discovery rate (FDR) 

was used to control for multiple comparisons within each model, with p-values adjusted 

separately for each age-group and for each modality (cortical thickness, surface area and 

subcortical volume). Results were considered significant if the FDR-corrected p-value (q) 

was ≤0.05.

To quantify the robustness of the main between group comparisons, additional leave-one-

site-out cross validation was performed for each of the models (see supplementary table 3–

13). For this cross-validation, the same model was repeatedly performed, each time 

removing one of the individual sites from the cohort. We report the distribution of the p-

values (mean, min and max p-value after all iterations), indicating how strongly the p-value 

of the comparison was influenced by single-site effects.

Results

The demographic and clinical characteristics of participants are summarized per age 

category in Table 1a–c (entire sample Supplementary Table S4), these are also the final 

numbers of subjects used in each of the analyses. Results not surviving multiple comparison 

correction, but with p-values <0.05 were considered trends and are described for the main 

analyses in Supplemental Information SI2. Based on our statistical tests, indicating an effect 

is specific means we observe a significant difference between a diagnostic group and the 

control group but not necessarily between a diagnostic group, and each of the three other 

groups, but not the others. It should be noted this is distinct from diagnostic specificity based 

on a full interaction model as recommended in (43)”
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Shared subcortical and cortical differences across clinical groups compared to healthy 
controls

Children with ADHD and those with ASD showed some overlap in subcortical volume and 

cortical thickness differences compared to controls (Supplementary Information SI2), 

however none of these results survived multiple comparison correction (Supplementary 

Tables S5–S6). In adolescents, we did not observe shared subcortical and cortical differences 

among any of the disorders (Supplementary Tables S7–S9). Adult patients with OCD and 

those with ASD showed smaller hippocampal volumes compared to adult controls, however 

this finding did not survive multiple comparison correction in adults with ASD 

(Supplementary Table S10). Adult patient groups showed no overlap in cortical differences 

(Supplementary Tables S11–S12). Details on differences compared to healthy controls per 

patient group can be found in Supplementary Tables S5–S13.

Disease-specific subcortical and cortical differences

Children: Figure 1a depicts the pattern of subcortical volume differences in children. 

Children with ADHD showed significantly smaller ICV compared to those with ASD (effect 

size=−0.23) or OCD (effect size=−0.28). Children with ADHD (effect size=−0.22) also 

showed smaller hippocampal volumes compared to children with OCD. No significant 

cortical differences among disorders survived multiple comparison correction 

(Supplementary Tables S15–S16 & Supplementary Information SI2).

Adolescents: Adolescents with ADHD had significantly smaller ICV compared to those 

with ASD (effect size=−0.22) or OCD (effect size=−0.19), shown in Figure 1b 

(Supplementary Table S17). However, the latter did not survive multiple comparison 

correction. Group differences in cortical thickness did not survive multiple comparison 

correction (Supplementary Table S18 & Supplementary Information SI2). Surface area 
analysis revealed significantly lower surface area of the medial orbitofrontal cortex (effect 

size=−0.22) in patients with OCD compared to patients with ADHD (Supplementary Table 

S19).

Adults: None of the subcortical volumes differed significantly among adult patient groups 

(Figure 1c & Supplementary Table S20). Cortical thickness analysis revealed significantly 

thicker cortical gray matter in several frontal regions in adults with ASD compared to adults 

with OCD or ADHD (Figure 2) with effect sizes varying between 0.17 and 0.30. Adults with 

OCD did not differ significantly from those with ADHD (Supplementary Table S21). 

Surface area analysis revealed that none of the regions differed significantly among patient 

groups (Supplementary Table S22).

Influence of medication on cross-disorder effects

Medication status information was incomplete. Table 1a–c lists the numbers of patients for 

whom information about medication status at the time of scanning was available.

Children: The smaller ICV between children with ADHD and those with OCD (effect 

size=−0.32) or those with ASD (effect size=−0.19) may be driven by the unmedicated 

children (Supplementary Table S23) since ICV did not significantly differed among 
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disorders when comparing the medicated children (Supplementary Tables S24). No cortical 
differences survived multiple comparison correction when comparing unmedicated children 

among disorders (Supplementary Tables S25 and S26).

Medicated children with OCD had larger amygdala volumes than medicated children with 

ADHD (effect size=0.43) (Supplementary Table S24). Medicated children with ASD 

showed a thicker cuneus cortex (effect size=0.60) compared to medicated children with 

OCD and a thinner middle temporal gyrus (effect size=−0.44) compared to medicated 

children with ADHD (Supplementary Table S27). No differences in surface area differences 

survived multiple comparison correction when comparing medicated children among 

disorders (Supplementary Tables S28).

Adolescents & Adults: Except for significantly larger surface area of the 

parahippocampal gyrus in unmedicated adults with ASD (effect size=0.33) compared to 

unmedicated adults with ADHD (Supplementary Table S29), no significant subcortical and 

cortical differences survived multiple comparison correction when comparing unmedicated 

(Supplementary Tables S30–S34) or medicated (Supplementary Tables S35–S40) adults and 

adolescents among disorders. Details on disease-specific differences for unmedicated or 

medicated patients compared to controls can be found in Supplementary Tables S41–S58.

Adjusting for Individual Differences in IQ

Information about IQ was incomplete. Table 1a-c shows the number of patients for whom IQ 

scores were available. We did not have sufficient IQ data to include adult patients with OCD 

into the analysis (Table 1a). Therefore, results for adults are based on ASD, ADHD, and HC 

only.

Adjusting for IQ resulted in similar findings as the main results across all age-groups 

(Supplementary Tables S59–S67). However, subcortical volume analysis did not show 

smaller hippocampal volumes in children with ADHD and children with ASD compared to 

those with OCD (Supplementary Table S59). Cortical thickness analysis additionally 

revealed significant thicker cortices of pars orbitalis (effect size=0.20), superior frontal gyrus 

(effect size=0.22), and frontal pole (effect size=0.23) in adults with ASD compared to adults 

with ADHD (Supplementary Table S67). Details on disease-specific differences compared to 

healthy controls adjusted for IQ can be found in Supplementary Tables S65–S73.

Supplementary robustness analyses

The leave-one-site-out cross-validation analyses (supplementary table 3–13) indicated that 

the main effects of diagnostic group in all age-bins was not influenced by single outlying 

site effects. Further scatterplots with polynomial age-fits for several selected key MRI 

features can be viewed in SI3, demonstrating the full distribution of data points over the 

lifespan for each diagnostic group.

SI4 shows for several key MRI features the Estimated Marginal Means for each diagnostic 

group after the main group comparisons model has been run, as well as full distributions of 

the residuals (with and without correction for site). These figures demonstrate that the 

inclusion of random slopes per site leads to more normally distributed residuals.
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SI5–7 show meta-analytic results for several key MRI features for each age-bin, containing 

both forest plots per site as well as the average meta-analytic results. These plots 

demonstrate considerable heterogeneity in the effect size between site, as well as overall 

smaller effect sizes in the mean meta-analysis result per MRI feature than those reported in 

our main mega-analysis.

As previous studies have shown field-strength may influence FreeSurfer segmentations (42), 

we have repeated the main between-group comparisons, split by sites employing either 1.5T 

or 3T scanner. As demonstrated in supplementary table 75, we mostly have a much larger 

sample of 3T scans. The results of these comparisons (see supplementary tables 75–84) 

indicate that the between-group results are mostly stable across field-strengths.

Discussion

This study comprised the largest neuroimaging investigation to date of structural brain 

alterations across ADHD, ASD and OCD. Results revealed differing patterns of subcortical 

and cortical differences among the disorders across childhood, adolescence, and adulthood. 

We found ADHD-specific smaller ICV in children and adolescents, and ASD-specific 

thicker frontal cortices in adults. We did not find OCD-specific differences across the 

different age-groups. No brain differences were shared among all three disorders.

Previous ENIGMA disease working group results, comparing patients with distinct disorders 

to controls, were mostly replicated, albeit not always using an FDR-corrected threshold. The 

current study included more patients and considerably more controls than the previously 

published working group studies (13–17). Accordingly, the present investigation may more 

accurately represent the normal heterogeneity in the control population. Importantly, our 

method allowed different mean control group outcomes per cohort, meaning that it 

statistically accounted for the heterogeneity amongst controls from different cohorts (24).

Overall, results were subtle with small to moderate effect sizes. These effect sizes emerge 

even after combining dozens of different scanner types and rise above the noise. Large-scale 

studies like those of the ENIGMA consortium convey another important message mainly by 

not replicating the extremely large effect sizes that have been found in previous research 

with smaller samples. Small clinical samples are often rather homogeneous samples 

carefully selected on the basis of a specific set of in- and exclusion criteria. Homogeneous 

samples can increase statistical power to discover larger effect sizes, but are typically not 

representative of the broader population, and such effect sizes are less likely to generalize to 

the population where patient groups are highly heterogeneous.

Smaller amygdala volume and thinner frontal and temporal cortices might be shared 

differences in children with ASD and ADHD (Supplementary Information SI2). We did not 

observe similar shared differences in the adolescents and adults with ASD and ADHD. 

These findings may be indicative of a more general delayed brain development (18,29). 

Smaller hippocampus volume might be a shared alteration in adults with ASD and OCD 

(Supplementary Information SI2). Hippocampal differences are also described in other 

psychiatric disorders, such as major depressive disorder, schizophrenia and bipolar disorder 
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(30,31). Decreased hippocampal volume may reflect a disorder non-specific effect, 

potentially related to chronic stressors (32).

Deficits in social communication and interaction are hypothesized to be related to a thinner 

temporal cortex (33). Our results fit with the involvement of the temporal cortex in ASD 

compared to controls, but we did not detect temporal cortex differences in patients with ASD 

compared to those with ADHD or OCD. A thicker cortex of several frontal regions was 

specific to patients with ASD and has been linked to impaired cognitive control and 

executive dysfunction (13,34). The pattern of thinner temporal and thicker frontal cortices in 

patients with ASD has been reported in longitudinal studies and suggests accelerated 

expansion in early childhood, accelerated thinning in later childhood and adolescence, and 

decelerated thinning in adulthood (35). Although executive dysfunction is present in all three 

patient groups (4,5), diagnostic categories might differ in executive functioning profiles. 

Future studies, such as the COMPULS study (36), that focus on neural correlates of 

executive functioning in all three patient groups will give more insight in this.

Inattention, hyperactivity and impulsivity are the main symptoms of ADHD, presumably 

modulated by abnormal fronto-striatal circuits (37). Our study confirms frontal surface area 

and striatal volume differences in children with ADHD compared to controls, but we did not 

detect these fronto-striatal differences in patients with ADHD compared to those with ASD 

or OCD. Smaller ICV did appear specific to children and adolescents with ADHD. These 

results support the hypothesis that differences in ADHD may be due to a delay in brain 

maturation (29), which possibly normalizes in adulthood. These results are also in line with 

the genetic correlation between risk for ADHD and smaller ICV (38).

Children with ASD (Supplementary Info SI2) and ADHD seemed to have smaller 

hippocampal volumes compared to children with OCD. This effect was not detected when 

adjusting for IQ. Although the sensitivity analysis adjusting for IQ was performed in a 

smaller subgroup, these findings indicate that the hippocampal volume differences may be 

driven by IQ differences among patient groups. Indeed, previous studies have shown an 

association between IQ and hippocampal volume (39). Further cross-disorder analyses 

adjusted for IQ revealed similar results as the main analyses across all age-groups.

Cross-disorder main effects were not detected when comparing medicated patients and 

unmedicated patients separately. However, these analyses may have been underpowered to 

detect the small effect sizes we observed in the larger combined group due to smaller sample 

sizes when stratifying patients according to medication status.

Two studies performed VBM meta-analyses and reported shared differences and disease 

specific differences between patients with ASD and OCD, and patients with ADHD and 

OCD, respectively (21,22). Our findings do not corroborate with these findings. This 

inconsistency might reflect reporting bias in these meta-analyses of published studies and/or 

differences in analytical methods. FreeSurfer segments brain regions based on probabilistic 

information from a predefined atlas compared to VBM’s voxel-wise registration. The 

differences in these methodological approaches may lead to diverging results. Mainly global 

or regional differences in structure can be inferred from atlas-based FreeSurfer analyses, as 
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opposed to voxel-level morphology with VBM. Thus local morphological differences may 

not be detected when averaging across regions (40).

Strengths and Limitations of the study

This study has several strengths and limitations. As the largest mega-analysis to date, sample 

size is an obvious strength. Another strength is harmonization of segmentation protocols 

across all participating sites, reducing variation caused by differences in methods. QC 

procedures were also harmonized across site, however, given the large datasets involved, QC 

was largely based on automated outlier detection before visual inspection. This means that 

more subtle biases (for instance limited head motion) may have remained unnoticed.

Another key limitation is the variation attributable to different scanners and acquisition 

protocols across cohorts. This issue was mitigated by the formal consideration of potential 

site differences in all statistical analyses. We have included comparisons of 1.5 vs 3 Tesla 

field strength in the supplement (see SI2), indicating that our main group effects are largely 

unaffected by field strength. However, other acquisition parameters like RF coil or imaging 

sequence were not available from sufficient sites to run sensitivity analyses, which must be 

considered a limitation of the current study, as these factors may influence segmentation 

results (41).

Another strength of the study was the use of mega- as opposed to meta-analysis. The 

comprehensive evaluation of missing data and greater flexibility in control of confounds at 

the level of individual patients and specific studies are significant advantages. Mega-

analyses are also recommended as they avoid the assumptions of within-study normality and 

known within-study variances, which are especially problematic when including small 

samples. Within supplementary materials 5–7 we demonstrate forest plots of the main group 

effects split by site, together with overall meta-analysis effects and I2 heterogeneity 

statistics. These results indicate substantial heterogeneity in the effect sizes between 

individual sites. Indeed our recent study comparing meta- and mega-analytical methods 

showed that the mega-analytical framework appears to be the better approach for 

investigating structural neuroimaging data in multi-center studies (24).

We did not perform stratified analyses for reported sex even though ADHD and ASD have a 

strong sex bias. This issue was mitigated by adjusting for sex in all statistical analyses. 

Moreover the independent working groups did not observed sex specific effects in their 

patient groups (13–17).

We chose to differentiate children, adolescents, and adults; cut-offs might not have been 

optimal, given different disorder onsets. Our rationale was to minimize differences in 

average age among disorders – in addition to age as a nuisance covariate – and thus to 

minimize the detection of age effects rather than disease effects. Separate analysis by age 

group also avoids the difficulties in modeling possibly complex – yet unknown, a priori – 

nonlinear age effects that might also differ among groups. The primary focus of this 

manuscript was cross-disorder comparisons. Yet such analyses of age effects are of great 

interest and should be addressed in future research using multivariate pattern recognition 
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e.g., the support vector machine that can detect informative patterns in the data that may not 

be identified by traditional linear analyses.

Structural differences among disorders did not show any significant association with 

medication use and IQ. Nonetheless, we did not have data on medication use and IQ for all 

patients, indicating insufficient statistical power to address this issue with confidence. We 

also lacked detailed information on psychotropic treatment. Further efforts are required to 

draw valid conclusions on the impact of psychotropic medication use on brain structure.

Effects of comorbidity or general phenotypic overlap among ADHD, ASD, and OCD could 

not be analyzed, because this was not systematically addressed across the cohorts of the 

different working groups. Presence of comorbidities might have reduced disorder-specific 

findings. However, excluding comorbid conditions would have ignored complex interactions 

that are often integral to the disorder. Future studies should test to what extent the comorbid 

cases differ from the “pure” disorders. Greater consideration of how data may be used in 

international collaborations such as ENIGMA may influence the collection of data in future 

studies, which may increase their impact beyond their primary focus.

Conclusion

To conclude, we found subcortical and cortical differences across different age categories 

among ADHD, ASD and OCD. We found ASD-specific cortical thickness differences in the 

frontal cortex of adult patients and ADHD-specific subcortical differences in children and 

adolescents. We did not find shared differences among the three disorders and shared 

differences across any two disorders did not survive multiple comparison corrections. 

Further work, e.g., multivariate pattern recognition analyses and normative modeling 

incorporating neural correlates, cognitive and genetic variables will be useful in 

understanding the mechanisms underlying distinct and shared deficits in these 

neurodevelopmental disorders.
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Figure 1a: 
Subcortical volume differences in children with ADHD, ASD, or OCD compared to controls

Significant results (FDR q ≤ 0.05) are indicated by an asterisk (Supplementary Table S5). 

For Effect size values across disorders see Supplementary Table S14. Abbreviations: 

Confidence Interval (CI); Intracranial volume (ICV)
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Figure 1b: 
Subcortical volume differences in adolescents with ADHD, ASD, or OCD compared to 

controls

Significant results (FDR q ≤ 0.05) are indicated by an asterisk (Supplementary Table S7). 

For Effect size values across disorders see Supplementary Table S17. Abbreviations: 

Confidence Interval (CI); Intracranial volume (ICV)
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Figure 1c: 
Subcortical volume differences in adults with ADHD, ASD, or OCD compared to controls

Significant results (FDR q ≤ 0.05) are indicated by an asterisk (Supplementary Table S10). 

For Effect size values across disorders see Supplementary Table S20. Abbreviations: 

Confidence Interval (CI); Intracranial volume (ICV)
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Figure 2: 
Thicker cortices of several frontal regions in adults with ASD compared to those with OCD 

or ADHD

Regions that showed a significant (FDR q ≤ 0.05) difference in cortical thickness among 

adults with ASD, ADHD or OCD. Positive effect sizes d (blue) indicate thicker cortices in 

adults with ASD patients compared to those with ADHD or OCD.
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