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ABSTRACT Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder that involves difficulties
in social communication. Previous research has demonstrated that these difficulties are apparent in the
way ASD children speak, indicating that it may be possible to estimate ASD severity using quantitative
features of speech. Here, we extracted a variety of prosodic, acoustic, and conversational features from
speech recordings of Hebrew speaking children who completed an Autism Diagnostic Observation Schedule
(ADOS) assessment. Sixty features were extracted from the recordings of 72 children and 21 of the features
were significantly correlated with the children’s ADOS scores. Positive correlations were found with pitch
variability and Zero Crossing Rate (ZCR), while negative correlations were found with the speed and number
of vocal responses to the clinician, and the overall number of vocalizations. Using these features, we built
several Deep Neural Network (DNN) algorithms to estimate ADOS scores and compared their performance
with Linear Regression and Support Vector Regression (SVR) models. We found that a Convolutional
Neural Network (CNN) yielded the best results. This algorithm predicted ADOS scores with a mean RMSE
of 4.65 and a mean correlation of 0.72 with the true ADOS scores when trained and tested on different sub-
samples of the available data. Automated algorithms with the ability to predict ASD severity in a reliable and
sensitive manner have the potential of revolutionizing early ASD identification, quantification of symptom
severity, and assessment of treatment efficacy.

INDEX TERMS Audio signals, autism, autism diagnostic observation schedule, autism spectrum disorder,
convolutional neural network, deep neural network, early detection, outcome measure, pitch, speech,
symptom severity, treatment efficacy, zero crossing rate.

I. INTRODUCTION
Autism Spectrum Disorder (ASD) is a neuro-developmental
disorder that is diagnosed by the presence of social communi-
cation impairments, repetitive behaviors, and confined inter-
ests [1]. The vast majority of ASD children exhibit speech
and expressive language abnormalities, which range from a
total lack of speech (i.e., non-verbal children) to those who
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develop normal vocabulary and syntax, but exhibit difficulties
with the use of appropriate prosody and pragmatics [2]. This
heterogeneity is apparent in the variable scores that children
with ASD receive in standardized language assessments [1].

Early studies that have examined speech in children with
ASD were based on small samples and manual analysis of
short speech recordings. These studies have revealed that a
considerable number of children with ASD exhibit expressive
language delays often involving a prolonged pre-verbal stage
[3]. Of those who do develop speech, many exhibit echolalia
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(i.e., repeating words or phrases for no apparent reason) [4],
including children with ASD who are deaf and use sign lan-
guage [5]. Abnormal prosody is also very common [6] includ-
ing reports of increased pitch variability and pitch range [7],
slower speech rate [8], and prolonged word production [9].

Using automated speech-processing techniques to identify
and quantify these and other speech abnormalities would
be of great clinical utility. For example, such techniques
could be used to assess early ASD risk, measure the severity
of symptoms, and quantify their improvement or deteriora-
tion over time (e.g., in response to treatment). Furthermore,
early intervention can successfully target expressive language
capabilities in children with ASD, with the goal of improving
general outcome [10].

With this in mind, several recent studies have utilized
automated speech processing algorithms to examine speech
recordings of English-speaking children with ASD. Most
prominent are those that have used the Language Environ-
ment Analysis (LENA) system [11], a commercially available
system that enables long audio recordings of the children in
their natural surroundings for several days. These recordings
are automatically segmented into speech segments that are
grouped by speaker, and the child is identified by his rela-
tively high pitch. Studies utilizing LENA have reported that
children with ASD differ significantly from typically devel-
oping (TD) children in the degree of voicing [11], amount of
vocalizations [12], length of syllables [11], clarity of formant
transitions [11], and amount of vocal reciprocity (i.e., conver-
sational turn-taking) [13].

While these findings are encouraging, LENA is not an
open-source software and it is, therefore, not possible to
further develop the LENA algorithms nor assess their utility
in estimating ASD severity. One recent study used a Deep
Neural Network (DNN) algorithm to estimate ASD sever-
ity from Autism Diagnostic Observation Schedule (ADOS)
recordings of 33 English-speaking children [14]. They esti-
mated the Social Affect (SA) scores of the ADOS, which
specifically assesses the children’s social abilities, and suc-
cessfully explained ∼40% of the variability in these scores
(i.e., R2

= 0.4). These results suggest that it may be possible
to predict ASD severity from relatively limited recordings of
speech performed during the 1-hour ADOS assessment.

Here, we compared the ability of six different algorithms
(two regression and four DNN models) to estimate ADOS
scores from recordings of ADOS assessments performedwith
Hebrew speaking children.We extracted a variety of prosodic
and conversational speech features from each recording and
used them to train and test each of the algorithms, using a
balanced cross validation approach.

II. EXPERIMENTAL SETUP
We selected recordings of 72 ADOS sessions that were per-
formed at the National Autism Research Center of Israel
(www.autismisrael.org), a collaborative project between Ben-
Gurion University of the Negev (BGU), Soroka University
Medical Center (SUMC), and other universities and medical

FIGURE 1. The ADOS recording room at the National Autism Research
Center.

centers in Israel. The recordings were performed with one
microphone (CHM99, AKG, Vienna), which was located 1-
2 m from the child (Fig. 1) and connected to a sound card
(US-16 × 08, TASCAM, California). Each ADOS session
lasted ∼40-minutes (41.6 ± 12.4 min) and was recorded at
a sampling rate of 44.1 kHz (down sampled to 16 kHz).
Of the 72 children included in the study, 56 had a diagnosis of
ASD, 10 were referred with a suspicion of ASD, but received
other diagnoses (e.g., language or developmental delays), and
6 were typically developing controls (Table 1).

All children completed a full clinical assessment according
to DSM-5 [15] criteria as well as an ADOS (second edition)
assessment using the toddler’s module (n=10), module 1
(n=19), module 2 (n=31), or module 3 (n=12). The selection
of the module depends on the age and language capacity of
the child. The ADOS is a semi-structured assessment where a
clinician administers specific tasks, observes the behavior of
the child, and scores their behavior. The total ADOS score is
in the range of 0-30 with higher scores indicating more severe
symptoms. The total ADOS score is composed of SA (0-22)
and Restricted and Repetitive Behavior (RRB, 0-8) scores,
which can be standardized into comparison scores that enable
comparison of ADOS scores across multiple ages and ADOS
modules [16].

TABLE 1. Children characteristics.

III. METHODS
A. MANUAL LABELING OF SPEECH INTERVALS
We developed in-house software with a Graphical User Inter-
face (GUI) and performed manual labeling of audio inter-
vals containing speech (and/or other sounds, such as: crying,
yelling, and mumbling) of the child, therapist 1, therapist
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2 (some sessions had two clinicians), parent, simultaneous
speech, and noise (e.g., chair being moved). All remaining
intervals were automatically labeled as silence (i.e., back-
ground noise). Simultaneous speech was defined as speech
of more than one speaker at a time.

B. AUTOMATIC DETECTION OF VOCAL SEGMENTS
Intervals of speech often contained multiple vocal segments
(e.g., multiple utterances) separated by silence. To more
accurately isolate vocal segments of individual speakers, we
performed the following steps. First, we removed the dc of
each audio recording (i.e., entire session). Second, we divided
the audio signal into 40 ms frames with 30 ms overlap (i.e.,
frame rate of 10 ms), and computed the energy (in dB) in each
frame (1):

E (i) = 10 · log10

 1
N

N∑
j=1

x (j)2

 (1)

where i is the frame index, j represents the sample index in the
ith frame, and N is the total number of samples in a frame.

Third, we defined a baseline energy level, Eb, (in dB),
as the most frequent energy level (i.e., background noise)
within the audio interval and its vicinity (± 20 s). Fourth,
we defined the start of each vocal segment, Segstart, as
the frame where the energy level was 90% above Eb
(th1 = 10 · log10(1.9) + Eb) for at least 50 ms (see Fig. 2).
Fifth, we defined the end of the vocal segment, Segend ,
as the frame where the energy level was 10% above Eb
(th2 = 10 · log10(1.1) + Eb) for 50 ms. Segments that were
shorter than 110 ms (too short to contain an utterance) or
longer than 3 s (too long to contain a well-formed phrase)
were excluded from further analysis as also performed by
the LENA’s algorithm [11]. We found that <1.5% of vocal
segments were excluded by these criteria. These steps and
criteria allowed us to isolate individual vocal segments within
each audio interval.

C. FEATURE EXTRACTION
We extracted 60 features from the vocal segments of each
recording using customwritten code and the PRAAT software
for analysis of pitch and formants [17].

1) PROSODIC AND ACOUSTIC FEATURES
Pitch (F0): The fundamental frequency generated by the
child’s vocal folds [18]. Pitch was calculated for each frame
(40 ms length, 10 ms frame rate). Frames with pitch values
below the voicing threshold were excluded from further anal-
ysis (voicing threshold was set to 0.45, which is a default
value for normałlaryngeal speech [19]). The following 12
features were calculated for each child/recording:

1. Mean pitch across frame of all vocal segments.
2. Variance of pitch across frames of all vocal segments.
3. Variance of pitch divided by the mean pitch of the

segment (i.e., pitch coefficient of variation). Mean was
computed across vocal segments.

FIGURE 2. Example of a child’s speech interval, which was segmented
into two vocal segments. (a) The speech interval in the time domain.
(b) The energy of the interval. Vertical lines in both panels mark the start
(red dashed line) and end of individual vocal segments (blue dotted line).
Horizontal lines mark the baseline energy level (dashed magenta line),
and the two energy thresholds: th1 (dotted gray line) and th2
(dashed-dotted green line).

4. Mean minimum value of pitch across vocal segments.
5. Variance of minimum pitch across vocal segments.
6. Mean maximum value of pitch across vocal segments.
7. Variance of maximum pitch across vocal segments.
8. Mean pitch across voiced segments only. Voiced seg-

ments were defined as those where >60% of frames
had pitch in the range of 60-1600 Hz [11].

9. Variance of pitch across voiced segments only.
10. Variance of mean pitch across voiced segments only.
11. Mean autocorrelation value from frames with pitch

across all vocal segments.
12. Variance of autocorrelation value across frames with

pitch.

Formants: The resonant frequencies, or formants, are mainly
determined by the size and shape of the vocal tract, including
the tongue, pharynx, and laryngeal, oral and nasal cavities
[20]. Audible formant transitions occur when the vocal tract
moves from a consonant closure to a vowel or vice versa [21].
The first two formants, and their bandwidths, were calculated
for each frame, and the following features were extracted:

13. Mean first formant across frame of all vocal segments.
14. Variance of first formant across frames of vocal seg-

ments.
15. Mean second formant across vocal segments.
16. Variance of second formant across vocal segments.
17. Mean absolute difference between the two formants

across frames of all vocal segments.
18. Variance of absolute difference between the two for-

mants across frames of all vocal segments.
19. Mean bandwidth of 1st formant across vocal segments.
20. Variance of 1st formant bandwidth across vocal seg-

ments.
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21. Mean 2nd formant bandwidth across vocal segments.
22. Variance of 2nd formant bandwidth across vocal seg-

ments.
Spectral slope: We fit a liner function to the FFT magni-
tude of two frequency ranges: 20-500 Hz and 500-1500 Hz
[22], [23] for each frame in each vocal segment. These
two frequency ranges were selected, because it was found
that they contain information regarding voice quality and
emotional states [22], [24]. This resulted in two spec-
tral slopes per frame. The following features were then
extracted:
23. Mean slope in 20-500 Hz across frame of vocal seg-

ments.
24. Variance of slope in 20-500 Hz across vocal segments.
25. Mean slope in 500-1500 Hz across frames of vocal

segments.
26. Variance of slope in 500-1500 Hz across vocal seg-

ments.
27. Mean slope in 20-500 Hz across voiced segments only.
28. Mean slope in 20-500 Hz across unvoiced segments

only.
29. Mean slope in 500-1500 Hz across voiced segments

only.
30. Mean slope in 500-1500 Hz across unvoiced segments

only.
Jitter: Is a measure of the cycle-to-cycle variations of fun-
damental frequency, which is commonly used for speaker
identification and voice pathology [25]. We calculated jitter
for frames with a defined pitch (F0 was not zero).
31. Mean jitter across frame of all vocal segments.
32. Variance of jitter across frames of all vocal segments.
Energy: Since speech energy (i.e., volume) can be influenced
from the distance between the child and the microphone,
we normalized the energy (i.e., all frames) by the maximum
energy (i.e., frame with maximal energy) of each recording
(Enorm). The delta energy (1Enorm) and the delta-delta energy
(11Enorm) were calculated as well yielding the following
eight energy features:
33. Mean of Enorm across vocal segments.
34. Mean change in energy across consecutive frames (i.e.,

first derivative, 1Enorm), across vocal segments.
35. Mean second derivate (11Enorm) across vocal seg-

ments.
36. Mean absolute value of 1Enorm across vocal segments.
37. Variance of Enorm across vocal segments.
38. Variance of 1Enorm across vocal segments.
39. Variance of 11Enorm across vocal segments.
40. Variance of absolute 1Enorm across vocal segments.
ZCR: We quantified the Zero Crossing Rate (ZCR) in each
frame [26] in each vocal segment and extracted the following
features:
41. Mean ZCR across vocal segments.
42. Variance of ZCR across vocal segments.
43. Mean ZCR across voiced segments only.
44. Variance of ZCR across voiced segments only.

45. Mean ZCR across unvoiced segments only.
46. Variance of ZCR across unvoiced segments only.

2) CONVERSATIONAL FEATURES
Vocalization rate: We counted the number of child vocal
segments per minute in each recording.

47. Mean vocalization rate.
48. Variance of vocalization rate.

Duration: We computed the duration/length of each of the
vocal segments. The following features were extracted:

49. Mean length of vocal segments.
50. Variance in the length of vocal segments.
51. Mean length of voiced vocal segments.
52. Variance in the length of voiced vocal segments.
53. Mean length of unvoiced vocal segments.
54. Variance in the length of unvoiced vocal segments.
55. Ratio between the mean length of voiced and unvoiced

segments.

Turn-taking: We defined turn-taking as cases where a ther-
apist’s vocal segment was followed, within 2 s, by a child’s
vocal segment. This yielded the following features:

56. Mean response time of the child (i.e., time from end of
the therapist’s segment).

57. Variance of the response time.
58. Mean number of turn-takings in one minute (conversa-

tional rate).
59. Variance of the conversational rate.

#Segments: The amount of child vocalizations.

60. Total number of the child’s vocal segments.

D. MODELS FOR PREDICTING ADOS SCORES
We built six models for predicting individual ADOS scores:

1) MULTPLE LINEAR REGRESSION
We divided the training dataset into 5 random groups (folds),
trained the multiple linear regression model using 4 of the
groups, and calculated the Root Mean Square Error (RMSE)
between the true ADOS scores and the predicted scores in
the left out group. We performed this procedure 5 times
(i.e., 5-folds cross validation) and used a Sequential Forward
Feature Selection (SFS) strategy [27] to rank the features
according to their ability to reduce the RMSE between the
true ADOS scores and the predicted scores. Hence, each
iteration resulted with a ranking of the 60 features from best
to worst. We then computed the RMSE as a function of the
number of features included (for each of the 5 iterations)
and calculated the mean RMSE across iterations. We found
that, on average, M∗ = 15 features yielded the lowest mean
RMSE (Fig. 3). We then trained a final model using the
15 most popular features across the 5 iterations/folds. We uti-
lized the entire training dataset (70% of the original data)
and tested the ability of the model to predict ADOS scores
from the independent testing dataset (30% of the original
data).
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FIGURE 3. Feature selection. Demonstration of the average RMSE value
when including an increasing number of features in the model. The
optimal number of features was 15 and is marked with the red star,
achieving a minimum average RMSE of 2.68 in the training dataset.

2) SUPPORT VECTOR REGRESSION (SVR)
SVR is another commonly used regression model for analyz-
ing speech [28]–[30]. We estimated ADOS scores using SVR
while applying either a linear, Gaussian, polynomial, or radial
basis function kernel, and z-normalizing each of the features.
The results of the SVR model with the linear kernel were
superior to the other kernels; hence, we report only the results
from the linear kernel.

3) FULLY CONNECTED DEEP NEURAL NETWORKS
We built three Fully Connected (FC) DNN models that dif-
fered in their input arrangement (feature arrangement, see
below) and the structure of their input layer. The three FC
models contained one input layer, 3 FC hidden layers, and a
final output FC layer that yielded the ADOS predictions for
each of the recordings/children (Fig. 4). A dropout of 0.5 was
set between each two FC layers, in order to minimize the risk
of overfitting [31].
Model 1 - Feature Vector for Each Session: The input for

this model was a single vector for each recording session
containing the values of the 60 features described above
(Table 2) as computed across all vocal segments (Fig. 4a).
The model was trained for 2000 epochs using batches of 8
samples in each training iteration.
Model 2 - Feature Vector for a Combination of Vocal Seg-

ments: DNN algorithms benefit from the availability of more
data samples. To increase the number of data samples we
selected sub-groups of 10 sequential vocal segments (of the
child) and computed a subset of the features (1-46 and 49-50)
for these sub-groups.We performed this procedure 100 times,
selecting random sub-groups of sequential segments from
each recording. This increased the number of available train-
ing samples from 51 (i.e., one per child in the training dataset)
to 5100 (i.e., 100 per child) and enabled us to train the model
with batches of 64 samples. The input to the DNNmodel was
a vector containing the values of 48 features that were com-
puted for each sub-group of 10 segments (Fig. 4b). The DNN
was trained, for 4000 epochs, with individual vectors/samples

such that each sample was associated with the ADOS score
of the relevant child. The 48 selected features excluded the
conversational features and included only features pertaining
to the child’s speech characteristics. The final output layer of
the DNN yielded the predicted ADOS score of each sample.
To generate the predicted ADOS score per child we computed
the mean ADOS score across the samples of each child.
Model 3 - Feature Matrix for Combinations of Vocal Seg-

ments: Here we applied the same logic as in Model 2 but
combined the 100 selected samples into a single input matrix.
This yielded an input matrix of 100 × 48, one matrix per
child. This model was trained with 51 samples/matrices in
batches of 8 for 4000 epochs. Note, however, that each sample
was a matrix that contained information from 100 randomly
selected sub-groups of 10 sequential vocal segments (i.e.,
increasing the amount of information available in each sam-
ple). The final output layer of the DNN yielded the predicted
ADOS score of the session/child (Fig. 4c).

4) CONVOLUTIONAL NEURAL NETWORK (CNN)
We also built a CNNmodel, which has previously been shown
to accurately identify different aspects of speech intonation
and prosody [32]–[35]. As in DNN model 3, here we used an
input feature matrix with a size of 100 × 48 for each child.
The model composed of two one-dimensional convolutional
layers (Fig. 4d), with 256 filters (f) and a kernel size of 3
(k). A one-dimensional max pooling layer with pooling size
of 3 (p) was evaluated between the two convolutional layers in
order to help remove variability in the time-frequency domain
that exists due to speech variability within each recording
[36]. Next, four FC hidden layers with reducing dimension-
ality (1024-512-256-128 units) were used and followed by
the output layer. We applied a ReLu activation function to the
output of each hidden FC layers and the two convolutional
layers, and a dropout of 0.5 after the first two FC layers. This
model was trained using batches of 4 samples for 400 epochs.

The final number of FC layers, convolutional layers, and
number of units in each architecture were chosen by tun-
ing the models with different combinations of parameters.
In addition, we selected optimal batch size and learning rate
parameters for each of the DNNmodels by testing all pairs of
the following combinations: batch size ∈ {4,8,16} for models
1,3 and CNN, and {32, 64} for model 2; learning rate ∈ {1e-
5, 5e-5, 1e-4, 5e-4}. The final selected parameters for each
model are shown in Table 3.

Since our algorithm was developed to solve a regression
problem, all four models were trained using the MSE loss
function, and RMSProp (Root Mean Square Propagation)
optimizer [37].

In the training step, all DNN and CNN models received
a feature vector/matrix from children in the training dataset
and a target vector of their true ADOS scores. The scores
were normalized by 30, to derive a target vector with a range
of [0, 1]. After training was completed, the test dataset was
evaluated, yielding the predicted ADOS scores (these were
multiplied by 30 for comparison with the true ADOS scores).
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FIGURE 4. DNN architectures for ADOS estimation. (a) FC-DNN model 1 – a model with a single 60-dimensional feature vector as input. (b) FC-DNN
model 2 – a model with a single 48-dimensional feature vector as input. (c) FC-DNN model 3 – a model with a 100× 48-dimensional feature matrix as
input. (d) CNN model – convolutional model with a 100× 48-feature matrix as input, with 256 filters and kernel size of 3 in the convolutional layers,
and a pooling size of 3.

TABLE 2. Features used in each of the DNN models.

TABLE 3. Hyper parameters of the DNN models.

E. DATA ANALYSIS
1) VALUE OF INDIVIDUAL FEATURES
We computed Pearson correlation coefficients [38] between
each of the speech features and each of the child’s charac-
teristics (age, total ADOS score, SA score, and RRB score).
This revealed potential relationships between the magnitude
of each feature (e.g., pitch variability) and the severity of
autism symptoms.

2) PREDICTION OF ADOS SCORES
To predict ADOS scores we trained and tested the models
described above on independent samples. We divided the
72 available recordings into a training dataset with 51 chil-
dren (70%) and a testing dataset with 21 children (30%).

To ensure that both the train and test datasets retained the
distribution of ADOS scores in the initial data we imple-
mented a balanced cross validation procedure, by randomly
creating train and test groups that fulfilled the following
criteria:
• Mean ADOS score of each group had to be within the
range of −10% and +10% of the total sample mean.

• The standard deviation of ADOS scores in each group
had to be within the range of −10% and +10% of the
total sample standard deviation.

• Kurtosis of the ADOS score distribution of each group
had to be within the range of −10% and +10% of the
kurtosis of the total sample distribution.

• Skewness of the distribution of each group had to be
between −0.3 and +0.3.

If one of the conditions was not met, we randomly selected
another pair. We created 50 different train and test groups and
tested each of the 6 models on all of them to demonstrate
the generalizability of the findings across different data selec-
tions.

The prediction accuracy of each model was assessed for
each of the 50 datasets by computing the RMSE and Pear-
son’s correlation coefficient between the true ADOS scores
and the ADOS scores predicted by the model.

IV. RESULTS
We identified a total of 27,395 vocal segments in the record-
ings of the 72 children, which were used in the following
analyses:
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FIGURE 5. Correlation coefficients between the feature set and children characteristics. (a) Features correlations with ADOS score. (b) Features
correlations with ADOS-SA score. (c) Features correlations with ADOS-RRB score. (d) Features correlations with age. Each color represents different
feature group. Asterisks indicate significant correlations (∗p-value < 0.05, ∗ ∗ p-value ≤ 0.01, ∗3 p-value ≤ 0.001, ∗4 p-value ≤ 0.0001).

A. VALUE OF INDIVIDUAL FEATURES
Twenty-one out of the 60 examined features were signif-
icantly correlated with the ADOS scores of the examined
children (Fig. 5). Seventeen features were significantly corre-
lated with the ADOS SA scores, 31 features were correlated
with the RRB scores, and 18 features were correlated with
the age of the children. Note that there was little overlap
between the speech features that were correlated with age and
those that were correlated with ASD severity, indicating that
distinct features carry information about these different child
characteristics.

B. ADOS ESTIMATION
We initially compared the performance of all six models
using a single training (i.e., 51 recordings) and testing (i.e.,
21 recordings) datasets. The behavioral characteristics and
the age of the children in the training and testing datasets were
intentionally matched (Table 4).

1) MULTIPLE LINEAR REGRESSION
We performed the multiple linear regression analysis with the
15 most informative features (#6, 9, 10, 13, 18-21, 24, 26, 27,
29, 32, 40 and 50), as selected by the FS procedure described
above (Fig. 3). The predicted ADOS scores (rounded to the
closest number) were moderately correlated with the true
ADOS scores (R = 0.43, p-value = 0.05) with an RMSE
of 6.93 (Fig. 6a).

TABLE 4. Children characteristics in initial train and test dataset.

2) SVR
An SVRmodel trained with all 60 features, yielded predicted
ADOS scores that were strongly and significantly correlated
with the actual ADOS scores (R = 0.78, p-value < 0.0001),
but with a relatively high RMSE of 5.56 (Fig. 6b). An SVR
model trained with the 15 selected features in the multiple
linear regression yielded poorer results (R = 0.42, p-value >

0.05, RMSE = 6.45).

3) DNN MODELS
Therewere considerable differences in the performance of the
four examinedDNNmodels (Fig. 6). TheCNNmodel yielded
the highest correlation (R = 0.82, p-value < 0.0001) and
lowest RMSE (3.83) of all models. FC-DNNmodel 3 yielded
a slightly weaker correlation (R = 0.81, p-value < 0.0001)
and higher RMSE (3.97). FC-DNNmodel 1 yielded a weaker
correlation (R = 0.77, p-value < 0.0001) and higher RMSE
(4.49), and FC-DNN model 2 yielded the lowest correlation
(R = 0.47, p-value < 0.05) and highest RMSE (6.12).
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FIGURE 6. Scatter plots of the predicted ADOS scores vs. actual ADOS
scores for each of the 6 models when using one selection of training and
testing datasets. (a) Linear regression. (b) SVR model. (c) FC-DNN model 1
(d) FC-DNN model 2. (e) FC-DNN model 3. (f) CNN model. The RMSE and
correlation coefficient (R) are presented in each panel. ∗p-value < 0.05,
∗ ∗ ∗ ∗ p-value < 0.0001.

4) BALANCED CROSS VALIDATION
To further evaluate the generalizability of these findings to
alternative selections of training and testing datasets, we ran-
domly selected 50 balanced training and testing datasets (as
described above) and re-tested each of the six models (two
regression and 4 DNN models) with each selection. This
yielded a histogram summarizing the performance of each
model across the 50 selections (Fig. 7).

The CNNmodel demonstrated the best performance across
datasets with the highest correlations (mean R= 0.72± 0.09)
and lowest RMSE values (mean = 4.65 ± 0.59). FC-DNN
model 3 followed with lower correlations (mean R = 0.70 ±
0.09) and higher RMSE values (mean = 4.95 ± 0.65). Then
the SVR model (mean R = 0.51 ± 0.17 and mean RMSE =
5.86 ± 0.43), FC-DNN model 1 (mean R = 0.50 ± 0.13 and
mean RMSE= 6.15± 0.86), and the linear regression model
(mean R = 0.36 ± 0.19 and mean RMSE = 7.36 ± 1.3).
Finally, FC-DNN model 2 exhibited the poorest performance
(mean R = 0.31 ± 0.25 and mean RMSE = 6.39 ± 0.7).
Note that the variability of performance across datasets

differed across models. The CNN model and FC-DNN
model 3 exhibited the most consistent performance across
the 50 dataset selections such that the standard deviation

FIGURE 7. Histograms demonstrating the distribution of R values for each
of the 6 models when tested on 50 different selections of balanced
testing and training datasets. (a) Linear regression model. R = 0.355 ±
0.193, RMSE = 7.364 ± 1.298. (b) SVR model. R = 0.510 ± 0.166, RMSE =
5.853 ± 0.431. (c) FC-DNN model 1. R = 0.501 ± 0.134, RMSE = 6.148 ±
0.864. (d) FC-DNN model 2. R = 0.312 ± 0.253, RMSE = 6.393 ± 0.701.
(e) FC-DNN model 3. R = 0.696 ± 0.091, RMSE = 4.952 ± 0.651. (f) CNN
model. R = 0.718 ± 0.093, RMSE = 4.648 ± 0.592.

of correlation values for both models was 0.09. In contrast,
the other models were considerably less consistent in their
performance across dataset selections, exhibiting large stan-
dard deviations that were between 0.13 – 0.25. These results
demonstrate the importance of selecting different training and
testing samples for determining the robustness and consis-
tency of performance.

V. DISCUSSION
Our study demonstrates that DNNmodels with specific archi-
tectures can be trained to predict ASD severity from speech
recordings of children with remarkably high accuracy. When
using the CNN model or FC-DNN model 3, the predicted
ADOS scores were strongly and consistently correlated with
the actual ADOS scores reported by the clinician (Fig. 7).
The models were trained with values of specific speech fea-
tures that were extracted from recordings of clinical ADOS
assessments where each child with ASD interacted with a
clinician for∼40 min.While previous studies have attempted
to use such recordings for separating ASD and typically
developing children [39], only a few studies to date have
utilized these speech features to predict the actual severity of
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ASD symptoms (i.e., ADOS scores). Furthermore, this is the
first time that these speech features and deep learning tech-
nique have been applied to recordings of Hebrew speaking
children. These results highlight the utility of speech analyses
for estimating ASD severity at very young ages, regardless
of the child’s spoken language or their cultural environment.
Further development of these algorithms has great potential
for aiding clinicians in assessing early risk for ASD and
for quantifying changes in ASD severity over time and in
response to treatment.

A. VALUE OF INDIVIDUAL FEATURES
The results revealed that specific prosodic, acoustic, and
conversational features from individual recordings were sig-
nificantly correlatedwith their ADOS scores (Fig. 5). Positive
correlations were apparent with most of the pitch (1-12)
and ZCR (41-46) features indicating that Hebrew speaking
ASD children with more severe symptoms tend to speak
with higher pitch, larger pitch variability, higher rates of zero
crossing values, and larger variability of zero crossing values.
These results are in line with previous studies demonstrating
that ASD children speak with larger pitch variability in com-
parison to controls. This was true for both Hebrew [40] and
English [41], [42] speaking children.

In contrast, conversational features of turn-taking (56-59)
and the total number of spoken segments (60) were nega-
tively correlated with ADOS scores. This indicates that ASD
children with more severe symptoms speak less, participate
in fewer conversational turns, as also reported in previous
studies with English speaking children [43]. Surprisingly, our
results showed that when ASD children with more severe
symptoms did respond, they tended to do so more quickly
(feature #56). This contradicts previous studies showing the
opposite in older English speaking children [43]. Further
research is necessary to assess the reproducibility of either
finding.

The magnitude of correlations with specific features of
speech differed when separating the total ADOS scores into
their SA and RRB components. RRB scores were more
strongly correlated with pitch, formants, jitter, energy, and
zero crossing features, while SA scores were more corre-
lated with vocalization rate, turn-taking, and total number of
vocalizations. This suggests that RRB symptoms tend to be
more strongly associated with acoustic and prosodic features
while SA symptoms tend to be more strongly associated with
conversational features. The specificity of particular speech
features to specific ASD symptom domains is critical for
developing speech analysis tools with clinical utility, because
children with ASD exhibit heterogeneous symptoms that can
differ dramatically across ASD cases.

Another important finding is the clear dissociation between
features that were associated with ASD severity (ADOS
scores) and features that were associated with the age of the
children. The age of participating children was most strongly
correlated with only few extracted features: vocalization rate,
the duration of vocalizations, and the total number of vocal-

izations. Most acoustic and prosodic features were not sig-
nificantly correlated with age. Note that the utility of specific
speech features for assessment of ASD severity may change
with age, requiring a longitudinal research approach that
tests the utility of different speech features during multiple
developmental periods.

B. ADOS SEVERITY ESTIMATION
The speech features described above were used to train the
six models that were built to estimate ADOS severity. There
were considerable differences in the performance of the six
models such that the CNN model and FC-DNN model 3 out-
performed the four other models in a robust and consistent
manner (Fig. 7).

The six models differed in their architecture and the struc-
ture of their input data. In FC-DNN model 1 we used each
recording as a single sample while computing a single value
for each speech feature across the entire recording (i.e., sin-
gle input vector with the values of 60 features per record-
ing/child). The performance of this model was better than that
of a linear regression model and slightly worse than the SVR
model.

In an attempt to improve ADOS prediction we created
FC-DNN model 2 where we changed the input data such
that instead of having a single sample per recording/child,
we now extracted 100 random samples of 10 consecutive
vocal segments from each recording. We computed 48 of the
60 speech features for each of these samples/vectors, thereby
yielding 100 samples per recording/child instead of just one.
This new architecture utilized the fact that there were many
child vocalizations in each recording, enabling us to create
multiple samples from each recording. The disadvantage of
this approach was that we had to limit the feature vector to
the 48 acoustic and prosodic features that could be computed
from child vocalizations only, without the 12 conversational
features that require assessment of the entire recording. This
approach, however, did not work well, yielding the poorest
performance of all models.

In FC-DNNmodel 3 we combined the same 100 randomly
selected samples of 10 vocal segments into a single input
matrix (size: 100 × 48). This approach yielded considerably
better performance in comparison to all other FC-DNN and
regression models, despite the limitation of utilizing only
48 acoustic and prosodic features (i.e., without the conver-
sational features).

Finally, altering the architecture to a CNN model while
using the same input structure as FC-DNN model 3, yielded
an additional increase in performance. This suggests that
there is a large performance benefit to architectures that
take advantage of input containing multiple samples of the
recorded child’s speech (i.e., matrix with speech features
as extracted from multiple combinations of speech seg-
ments). Furthermore, the considerable improvement in per-
formance of the CNN model and FC-DNN model 3, relative
to the linear regression and support vector regression models,
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demonstrates that the optimal ADOS prediction model is not
likely to be linear.

Previous studies in this domain have mostly focused on
utilizing speech features to classify children into ASD and
typically developing groups. For example, Pokorny et al. [39]
examined recordings of vocalizations from twenty 10-month-
old children later diagnosed with ASD, and a matched TD
group. They extracted 88 acoustic features of the children’s
vocalizations and achieved 75% accuracy in classifying chil-
dren into their respective groups using a BLSTM DNN algo-
rithm.

To the best of our knowledge, only a few studies to date
have attempted to estimate ASD severity from vocal record-
ings of children. For example, one study [14] used a combined
DNN and Random Forest algorithm to estimate Calibrated
Severity SA Scores (CSS SA) from 33 recordings and was
able to predict CSS SA scores yielding a correlation of
∼0.63 with the true CSS SA scores. Their approach utilized
a DNN for speech activity detection and speaker diarization,
and a synthetic random forest algorithm for ADOS score
estimation.

Further research incorporating automatic speaker diariza-
tion techniques, instead of manual annotation, will enable
development of fully automated ASD severity estimation
systems. Furthermore, additional research will be able to
extend these techniques for use with longer home recordings
as performed using the LENA system [11] rather than short
recordings performed at the clinic.

VI. CONCLUSION
Our results demonstrate that a variety of prosodic, acoustic,
and conversational features are informative of ASD sever-
ity in young Hebrew speaking children. These features can
be utilized by a CNN model to yield remarkably accurate
prediction of ADOS scores when applying an architecture
that utilizes multiple vocalization samples from each child in
tandem. We suggest that this speech analysis algorithm may
have considerable clinical utility in assessing early ASD risk
and as a novel outcomemeasure for quantifying ASD severity
changes over time and following treatments.
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